LiMoSense: live monitoring in dynamic sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04-08

AUTHORS

Ittay Eyal, Idit Keidar, Raphael Rom

ABSTRACT

We present LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor networks. This is the first asynchronous robust average aggregation algorithm that performs live monitoring, i.e., it constantly obtains a timely and accurate picture of dynamically changing data. LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-changing sensor reads. It overcomes message loss, node failures and recoveries, and dynamic network topology changes. The algorithm uses a novel technique to bound variable size. We present the algorithm and formally prove its correctness. We use simulations to illustrate its ability to quickly react to changes of both the network topology and the sensor reads, and to provide accurate information. More... »

PAGES

313-328

References to SciGraph publications

  • 2006. Efficient Dynamic Aggregation in DISTRIBUTED COMPUTING
  • 2012. LiMoSense – Live Monitoring in Dynamic Sensor Networks in ALGORITHMS FOR SENSOR SYSTEMS
  • 2011. Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution in PRINCIPLES OF DISTRIBUTED SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00446-014-0213-8

    DOI

    http://dx.doi.org/10.1007/s00446-014-0213-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021492642


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Cornell University, Ithaca, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Computer Science, Cornell University, Ithaca, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eyal", 
            "givenName": "Ittay", 
            "id": "sg:person.015022230121.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical Engineering, Technion, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Electrical Engineering, Technion, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keidar", 
            "givenName": "Idit", 
            "id": "sg:person.07674464077.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical Engineering, Technion, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Electrical Engineering, Technion, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rom", 
            "givenName": "Raphael", 
            "id": "sg:person.012671211041.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671211041.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-28209-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000818520", 
              "https://doi.org/10.1007/978-3-642-28209-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-25873-2_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032480273", 
              "https://doi.org/10.1007/978-3-642-25873-2_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11864219_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042573181", 
              "https://doi.org/10.1007/11864219_7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04-08", 
        "datePublishedReg": "2014-04-08", 
        "description": "We present LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor networks. This is the first asynchronous robust average aggregation algorithm that performs live monitoring, i.e., it constantly obtains a timely and accurate picture of dynamically changing data. LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-changing sensor reads. It overcomes message loss, node failures and recoveries, and dynamic network topology changes. The algorithm uses a novel technique to bound variable size. We present the algorithm and formally prove its correctness. We use simulations to illustrate its ability to quickly react to changes of both the network topology and the sensor reads, and to provide accurate information.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00446-014-0213-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052621", 
            "issn": [
              "0178-2770", 
              "1432-0452"
            ], 
            "name": "Distributed Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "dynamic sensor networks", 
          "sensor networks", 
          "dynamic network topology changes", 
          "network topology changes", 
          "live monitoring", 
          "aggregation algorithm", 
          "message loss", 
          "node failures", 
          "topology changes", 
          "network topology", 
          "monitoring algorithm", 
          "algorithm", 
          "large collection", 
          "network", 
          "novel technique", 
          "accurate information", 
          "correctness", 
          "variable size", 
          "gossip", 
          "topology", 
          "sensors", 
          "information", 
          "monitoring", 
          "simulations", 
          "collection", 
          "technique", 
          "accurate picture", 
          "reads", 
          "data", 
          "ability", 
          "picture", 
          "size", 
          "failure", 
          "loss", 
          "changes", 
          "recovery", 
          "LiMoSense", 
          "fault-tolerant live monitoring algorithm", 
          "live monitoring algorithm", 
          "first asynchronous robust average aggregation algorithm", 
          "asynchronous robust average aggregation algorithm", 
          "robust average aggregation algorithm", 
          "average aggregation algorithm", 
          "sensor reads"
        ], 
        "name": "LiMoSense: live monitoring in dynamic sensor networks", 
        "pagination": "313-328", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021492642"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00446-014-0213-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00446-014-0213-8", 
          "https://app.dimensions.ai/details/publication/pub.1021492642"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_633.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00446-014-0213-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00446-014-0213-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00446-014-0213-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00446-014-0213-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00446-014-0213-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      22 PREDICATES      73 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00446-014-0213-8 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author N1cce2bc932ed46c6b9fb95cb299b7eef
    5 schema:citation sg:pub.10.1007/11864219_7
    6 sg:pub.10.1007/978-3-642-25873-2_35
    7 sg:pub.10.1007/978-3-642-28209-6_7
    8 schema:datePublished 2014-04-08
    9 schema:datePublishedReg 2014-04-08
    10 schema:description We present LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor networks. This is the first asynchronous robust average aggregation algorithm that performs live monitoring, i.e., it constantly obtains a timely and accurate picture of dynamically changing data. LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-changing sensor reads. It overcomes message loss, node failures and recoveries, and dynamic network topology changes. The algorithm uses a novel technique to bound variable size. We present the algorithm and formally prove its correctness. We use simulations to illustrate its ability to quickly react to changes of both the network topology and the sensor reads, and to provide accurate information.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N49e03ac0934f49eead5fa3d6cf70c94d
    15 Neb8b4bd3072d47d69c98e5a940773735
    16 sg:journal.1052621
    17 schema:keywords LiMoSense
    18 ability
    19 accurate information
    20 accurate picture
    21 aggregation algorithm
    22 algorithm
    23 asynchronous robust average aggregation algorithm
    24 average aggregation algorithm
    25 changes
    26 collection
    27 correctness
    28 data
    29 dynamic network topology changes
    30 dynamic sensor networks
    31 failure
    32 fault-tolerant live monitoring algorithm
    33 first asynchronous robust average aggregation algorithm
    34 gossip
    35 information
    36 large collection
    37 live monitoring
    38 live monitoring algorithm
    39 loss
    40 message loss
    41 monitoring
    42 monitoring algorithm
    43 network
    44 network topology
    45 network topology changes
    46 node failures
    47 novel technique
    48 picture
    49 reads
    50 recovery
    51 robust average aggregation algorithm
    52 sensor networks
    53 sensor reads
    54 sensors
    55 simulations
    56 size
    57 technique
    58 topology
    59 topology changes
    60 variable size
    61 schema:name LiMoSense: live monitoring in dynamic sensor networks
    62 schema:pagination 313-328
    63 schema:productId N0c50af181d19462fafbe8734a7a972d2
    64 N8f631eb6e5ce4e849521ccaf485d128b
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021492642
    66 https://doi.org/10.1007/s00446-014-0213-8
    67 schema:sdDatePublished 2021-12-01T19:31
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N130f81575243497197805c1f3a831b2e
    70 schema:url https://doi.org/10.1007/s00446-014-0213-8
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N0c50af181d19462fafbe8734a7a972d2 schema:name dimensions_id
    75 schema:value pub.1021492642
    76 rdf:type schema:PropertyValue
    77 N130f81575243497197805c1f3a831b2e schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N1cce2bc932ed46c6b9fb95cb299b7eef rdf:first sg:person.015022230121.71
    80 rdf:rest N3710fd1c6cf34b128b5fe1df06e69a3a
    81 N3710fd1c6cf34b128b5fe1df06e69a3a rdf:first sg:person.07674464077.03
    82 rdf:rest N855e292f4b1a497db08a475728488644
    83 N49e03ac0934f49eead5fa3d6cf70c94d schema:issueNumber 5
    84 rdf:type schema:PublicationIssue
    85 N855e292f4b1a497db08a475728488644 rdf:first sg:person.012671211041.51
    86 rdf:rest rdf:nil
    87 N8f631eb6e5ce4e849521ccaf485d128b schema:name doi
    88 schema:value 10.1007/s00446-014-0213-8
    89 rdf:type schema:PropertyValue
    90 Neb8b4bd3072d47d69c98e5a940773735 schema:volumeNumber 27
    91 rdf:type schema:PublicationVolume
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Artificial Intelligence and Image Processing
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information Systems
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1052621 schema:issn 0178-2770
    102 1432-0452
    103 schema:name Distributed Computing
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.012671211041.51 schema:affiliation grid-institutes:grid.6451.6
    107 schema:familyName Rom
    108 schema:givenName Raphael
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671211041.51
    110 rdf:type schema:Person
    111 sg:person.015022230121.71 schema:affiliation grid-institutes:grid.5386.8
    112 schema:familyName Eyal
    113 schema:givenName Ittay
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71
    115 rdf:type schema:Person
    116 sg:person.07674464077.03 schema:affiliation grid-institutes:grid.6451.6
    117 schema:familyName Keidar
    118 schema:givenName Idit
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03
    120 rdf:type schema:Person
    121 sg:pub.10.1007/11864219_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042573181
    122 https://doi.org/10.1007/11864219_7
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-642-25873-2_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032480273
    125 https://doi.org/10.1007/978-3-642-25873-2_35
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-28209-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000818520
    128 https://doi.org/10.1007/978-3-642-28209-6_7
    129 rdf:type schema:CreativeWork
    130 grid-institutes:grid.5386.8 schema:alternateName Department of Computer Science, Cornell University, Ithaca, NY, USA
    131 schema:name Department of Computer Science, Cornell University, Ithaca, NY, USA
    132 rdf:type schema:Organization
    133 grid-institutes:grid.6451.6 schema:alternateName Department of Electrical Engineering, Technion, Haifa, Israel
    134 schema:name Department of Electrical Engineering, Technion, Haifa, Israel
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...