Distributed data clustering in sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

Ittay Eyal, Idit Keidar, Raphael Rom

ABSTRACT

Low overhead analysis of large distributed data sets is necessary for current data centers and for future sensor networks. In such systems, each node holds some data value, e.g., a local sensor read, and a concise picture of the global system state needs to be obtained. In resource-constrained environments like sensor networks, this needs to be done without collecting all the data at any location, i.e., in a distributed manner. To this end, we address the distributed clustering problem, in which numerous interconnected nodes compute a clustering of their data, i.e., partition these values into multiple clusters, and describe each cluster concisely. We present a generic algorithm that solves the distributed clustering problem and may be implemented in various topologies, using different clustering types. For example, the generic algorithm can be instantiated to cluster values according to distance, targeting the same problem as the famous k-means clustering algorithm. However, the distance criterion is often not sufficient to provide good clustering results. We present an instantiation of the generic algorithm that describes the values as a Gaussian Mixture (a set of weighted normal distributions), and uses machine learning tools for clustering decisions. Simulations show the robustness, speed and scalability of this algorithm. We prove that any implementation of the generic algorithm converges over any connected topology, clustering criterion and cluster representation, in fully asynchronous settings. More... »

PAGES

207-222

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00446-011-0143-7

DOI

http://dx.doi.org/10.1007/s00446-011-0143-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009468860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Electrical Engineering, The Technion\u2014Israel Institute of Technology, 32000, Technion city, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyal", 
        "givenName": "Ittay", 
        "id": "sg:person.015022230121.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Electrical Engineering, The Technion\u2014Israel Institute of Technology, 32000, Technion city, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keidar", 
        "givenName": "Idit", 
        "id": "sg:person.07674464077.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Electrical Engineering, The Technion\u2014Israel Institute of Technology, 32000, Technion city, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rom", 
        "givenName": "Raphael", 
        "id": "sg:person.012671211041.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671211041.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-30186-8_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007837128", 
          "https://doi.org/10.1007/978-3-540-30186-8_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30186-8_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007837128", 
          "https://doi.org/10.1007/978-3-540-30186-8_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835698.1835738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035154079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/945506.945507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043549873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0000(85)90041-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051962696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.895117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090769752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972764.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.2003.1238221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094284548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/esscir.1998.186200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095215875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "Low overhead analysis of large distributed data sets is necessary for current data centers and for future sensor networks. In such systems, each node holds some data value, e.g., a local sensor read, and a concise picture of the global system state needs to be obtained. In resource-constrained environments like sensor networks, this needs to be done without collecting all the data at any location, i.e., in a distributed manner. To this end, we address the distributed clustering problem, in which numerous interconnected nodes compute a clustering of their data, i.e., partition these values into multiple clusters, and describe each cluster concisely. We present a generic algorithm that solves the distributed clustering problem and may be implemented in various topologies, using different clustering types. For example, the generic algorithm can be instantiated to cluster values according to distance, targeting the same problem as the famous k-means clustering algorithm. However, the distance criterion is often not sufficient to provide good clustering results. We present an instantiation of the generic algorithm that describes the values as a Gaussian Mixture (a set of weighted normal distributions), and uses machine learning tools for clustering decisions. Simulations show the robustness, speed and scalability of this algorithm. We prove that any implementation of the generic algorithm converges over any connected topology, clustering criterion and cluster representation, in fully asynchronous settings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00446-011-0143-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052621", 
        "issn": [
          "0178-2770", 
          "1432-0452"
        ], 
        "name": "Distributed Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Distributed data clustering in sensor networks", 
    "pagination": "207-222", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d1ae7869342af94d665b5c37a8ab4163b039cd6848cee560d988a8255103b61"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00446-011-0143-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009468860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00446-011-0143-7", 
      "https://app.dimensions.ai/details/publication/pub.1009468860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00446-011-0143-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00446-011-0143-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00446-011-0143-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00446-011-0143-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00446-011-0143-7'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00446-011-0143-7 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc7965b71f6614afb98371ec2ee2885f9
4 schema:citation sg:pub.10.1007/978-3-540-30186-8_20
5 https://doi.org/10.1016/0022-0000(85)90041-8
6 https://doi.org/10.1109/2.895117
7 https://doi.org/10.1109/esscir.1998.186200
8 https://doi.org/10.1109/sfcs.2003.1238221
9 https://doi.org/10.1137/090769752
10 https://doi.org/10.1137/1.9781611972764.14
11 https://doi.org/10.1145/1835698.1835738
12 https://doi.org/10.1145/945506.945507
13 schema:datePublished 2011-12
14 schema:datePublishedReg 2011-12-01
15 schema:description Low overhead analysis of large distributed data sets is necessary for current data centers and for future sensor networks. In such systems, each node holds some data value, e.g., a local sensor read, and a concise picture of the global system state needs to be obtained. In resource-constrained environments like sensor networks, this needs to be done without collecting all the data at any location, i.e., in a distributed manner. To this end, we address the distributed clustering problem, in which numerous interconnected nodes compute a clustering of their data, i.e., partition these values into multiple clusters, and describe each cluster concisely. We present a generic algorithm that solves the distributed clustering problem and may be implemented in various topologies, using different clustering types. For example, the generic algorithm can be instantiated to cluster values according to distance, targeting the same problem as the famous k-means clustering algorithm. However, the distance criterion is often not sufficient to provide good clustering results. We present an instantiation of the generic algorithm that describes the values as a Gaussian Mixture (a set of weighted normal distributions), and uses machine learning tools for clustering decisions. Simulations show the robustness, speed and scalability of this algorithm. We prove that any implementation of the generic algorithm converges over any connected topology, clustering criterion and cluster representation, in fully asynchronous settings.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N6c949f3c53de4ff0a638a230d9b499db
20 N9f236dcf4225427a8f8102f194a0255d
21 sg:journal.1052621
22 schema:name Distributed data clustering in sensor networks
23 schema:pagination 207-222
24 schema:productId N3cdc8b52075f43bbaf3b2164841d1a26
25 Na5a55319a3cc413a9f83ba6792a47710
26 Nbd01103d17484bbe9271e59010162f52
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009468860
28 https://doi.org/10.1007/s00446-011-0143-7
29 schema:sdDatePublished 2019-04-10T21:29
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nb0cb3489e7bb40038460037a2f25a51e
32 schema:url http://link.springer.com/10.1007/s00446-011-0143-7
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N3cdc8b52075f43bbaf3b2164841d1a26 schema:name dimensions_id
37 schema:value pub.1009468860
38 rdf:type schema:PropertyValue
39 N6c949f3c53de4ff0a638a230d9b499db schema:issueNumber 5
40 rdf:type schema:PublicationIssue
41 N6f37af7a6a564a2891423d3c8d64af39 rdf:first sg:person.012671211041.51
42 rdf:rest rdf:nil
43 N9f236dcf4225427a8f8102f194a0255d schema:volumeNumber 24
44 rdf:type schema:PublicationVolume
45 Na5a55319a3cc413a9f83ba6792a47710 schema:name doi
46 schema:value 10.1007/s00446-011-0143-7
47 rdf:type schema:PropertyValue
48 Naabbe898c79d40d6aa49f3c854a8c0d9 rdf:first sg:person.07674464077.03
49 rdf:rest N6f37af7a6a564a2891423d3c8d64af39
50 Nb0cb3489e7bb40038460037a2f25a51e schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nbd01103d17484bbe9271e59010162f52 schema:name readcube_id
53 schema:value 2d1ae7869342af94d665b5c37a8ab4163b039cd6848cee560d988a8255103b61
54 rdf:type schema:PropertyValue
55 Nc7965b71f6614afb98371ec2ee2885f9 rdf:first sg:person.015022230121.71
56 rdf:rest Naabbe898c79d40d6aa49f3c854a8c0d9
57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
58 schema:name Information and Computing Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information Systems
62 rdf:type schema:DefinedTerm
63 sg:journal.1052621 schema:issn 0178-2770
64 1432-0452
65 schema:name Distributed Computing
66 rdf:type schema:Periodical
67 sg:person.012671211041.51 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
68 schema:familyName Rom
69 schema:givenName Raphael
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671211041.51
71 rdf:type schema:Person
72 sg:person.015022230121.71 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
73 schema:familyName Eyal
74 schema:givenName Ittay
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71
76 rdf:type schema:Person
77 sg:person.07674464077.03 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
78 schema:familyName Keidar
79 schema:givenName Idit
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-540-30186-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007837128
83 https://doi.org/10.1007/978-3-540-30186-8_20
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0022-0000(85)90041-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051962696
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/2.895117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106338
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/esscir.1998.186200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095215875
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/sfcs.2003.1238221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094284548
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1137/090769752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856646
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1137/1.9781611972764.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800087
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1145/1835698.1835738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035154079
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/945506.945507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043549873
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
102 schema:name Department of Electrical Engineering, The Technion—Israel Institute of Technology, 32000, Technion city, Haifa, Israel
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...