Ecologically meaningful transformations for ordination of species data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-10-01

AUTHORS

Pierre Legendre, Eugene D. Gallagher

ABSTRACT

This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning. More... »

PAGES

271-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004420100716

DOI

http://dx.doi.org/10.1007/s004420100716

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021940115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28547606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D\u00e9partement de sciences biologiques, Universit\u00e9 de Montr\u00e9al, C.P. 6128, succursale Centre-ville, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "D\u00e9partement de sciences biologiques, Universit\u00e9 de Montr\u00e9al, C.P. 6128, succursale Centre-ville, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legendre", 
        "givenName": "Pierre", 
        "id": "sg:person.011150411053.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallagher", 
        "givenName": "Eugene D.", 
        "id": "sg:person.016530330145.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-10-01", 
    "datePublishedReg": "2001-10-01", 
    "description": "This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s004420100716", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1009586", 
        "issn": [
          "0029-8549", 
          "1432-1939"
        ], 
        "name": "Oecologia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "keywords": [
      "species data", 
      "community composition data", 
      "Euclidean distance", 
      "ordination methods", 
      "community data", 
      "chi-square distance", 
      "least squares loss function", 
      "k-means", 
      "ordination", 
      "ecologists", 
      "loss function", 
      "data tables", 
      "species", 
      "data analysis", 
      "meaningful transformation", 
      "biplot", 
      "composition data", 
      "data", 
      "multivariate data analysis", 
      "analysis", 
      "PCA", 
      "CCA", 
      "table", 
      "method", 
      "Euclidean", 
      "applications", 
      "function", 
      "distance", 
      "goal", 
      "Ca", 
      "present problem", 
      "explanatory variables", 
      "transformation", 
      "use", 
      "relationship", 
      "example", 
      "RDA", 
      "variables", 
      "cases", 
      "problem", 
      "paper"
    ], 
    "name": "Ecologically meaningful transformations for ordination of species data", 
    "pagination": "271-280", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021940115"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004420100716"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28547606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004420100716", 
      "https://app.dimensions.ai/details/publication/pub.1021940115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_310.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s004420100716"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      20 PREDICATES      66 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004420100716 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N04090195a8844cdc8a1f0e977099fbd8
4 schema:datePublished 2001-10-01
5 schema:datePublishedReg 2001-10-01
6 schema:description This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N4c01c36178ad451592874422624c0c9c
10 Nc330c19ee57240a2bfae178727a8d9b5
11 sg:journal.1009586
12 schema:keywords CCA
13 Ca
14 Euclidean
15 Euclidean distance
16 PCA
17 RDA
18 analysis
19 applications
20 biplot
21 cases
22 chi-square distance
23 community composition data
24 community data
25 composition data
26 data
27 data analysis
28 data tables
29 distance
30 ecologists
31 example
32 explanatory variables
33 function
34 goal
35 k-means
36 least squares loss function
37 loss function
38 meaningful transformation
39 method
40 multivariate data analysis
41 ordination
42 ordination methods
43 paper
44 present problem
45 problem
46 relationship
47 species
48 species data
49 table
50 transformation
51 use
52 variables
53 schema:name Ecologically meaningful transformations for ordination of species data
54 schema:pagination 271-280
55 schema:productId Nba70dc69fcb742409fcbb731536d7847
56 Neebf897f4e9c45bba96e2b4064acb7de
57 Nf342b111b00f45ccaf2981e933d2bec6
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940115
59 https://doi.org/10.1007/s004420100716
60 schema:sdDatePublished 2022-11-24T20:49
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N5214d59b99f242f99262caee5d6d7395
63 schema:url https://doi.org/10.1007/s004420100716
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N04090195a8844cdc8a1f0e977099fbd8 rdf:first sg:person.011150411053.39
68 rdf:rest Nff99f07e2dbc47e5a89c4c2a512ba850
69 N4c01c36178ad451592874422624c0c9c schema:volumeNumber 129
70 rdf:type schema:PublicationVolume
71 N5214d59b99f242f99262caee5d6d7395 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nba70dc69fcb742409fcbb731536d7847 schema:name pubmed_id
74 schema:value 28547606
75 rdf:type schema:PropertyValue
76 Nc330c19ee57240a2bfae178727a8d9b5 schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 Neebf897f4e9c45bba96e2b4064acb7de schema:name doi
79 schema:value 10.1007/s004420100716
80 rdf:type schema:PropertyValue
81 Nf342b111b00f45ccaf2981e933d2bec6 schema:name dimensions_id
82 schema:value pub.1021940115
83 rdf:type schema:PropertyValue
84 Nff99f07e2dbc47e5a89c4c2a512ba850 rdf:first sg:person.016530330145.74
85 rdf:rest rdf:nil
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
90 schema:name Ecology
91 rdf:type schema:DefinedTerm
92 sg:journal.1009586 schema:issn 0029-8549
93 1432-1939
94 schema:name Oecologia
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.011150411053.39 schema:affiliation grid-institutes:grid.14848.31
98 schema:familyName Legendre
99 schema:givenName Pierre
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39
101 rdf:type schema:Person
102 sg:person.016530330145.74 schema:affiliation grid-institutes:grid.266685.9
103 schema:familyName Gallagher
104 schema:givenName Eugene D.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74
106 rdf:type schema:Person
107 grid-institutes:grid.14848.31 schema:alternateName Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, H3C 3J7, Montréal, Québec, Canada
108 schema:name Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, H3C 3J7, Montréal, Québec, Canada
109 rdf:type schema:Organization
110 grid-institutes:grid.266685.9 schema:alternateName Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA
111 schema:name Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...