Ecologically meaningful transformations for ordination of species data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-10

AUTHORS

Pierre Legendre, Eugene D. Gallagher

ABSTRACT

This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning. More... »

PAGES

271-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004420100716

DOI

http://dx.doi.org/10.1007/s004420100716

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021940115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28547606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "D\u00e9partement de sciences biologiques, Universit\u00e9 de Montr\u00e9al, C.P. 6128, succursale Centre-ville, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legendre", 
        "givenName": "Pierre", 
        "id": "sg:person.011150411053.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallagher", 
        "givenName": "Eugene D.", 
        "id": "sg:person.016530330145.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-10", 
    "datePublishedReg": "2001-10-01", 
    "description": "This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004420100716", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1009586", 
        "issn": [
          "0029-8549", 
          "1432-1939"
        ], 
        "name": "Oecologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Ecologically meaningful transformations for ordination of species data", 
    "pagination": "271-280", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6886f69629a402b1be0c6dadb94830d40854895a76201081a8a44965564e5747"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28547606"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0150372"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004420100716"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021940115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004420100716", 
      "https://app.dimensions.ai/details/publication/pub.1021940115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs004420100716"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      29 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004420100716 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Nd2f80532c2014fe0994ee4baffc0d6c3
4 schema:datePublished 2001-10
5 schema:datePublishedReg 2001-10-01
6 schema:description This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N15ef866bed334f3ba6c4db01e159f7b3
11 Nd2c5e08fa88c4dad87527d09f6b2586e
12 sg:journal.1009586
13 schema:name Ecologically meaningful transformations for ordination of species data
14 schema:pagination 271-280
15 schema:productId N3ce431f443a14b6caeede4b43da6975b
16 N5d4a0c5647b04725b08d507bd74cf8e0
17 N7312f8087e54409cb9e4a9c7793e4947
18 N9075a9e898d3431a9a3dcdf013be43e9
19 Naaefa5533e1a4e7ebc8da56341f5ab9b
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940115
21 https://doi.org/10.1007/s004420100716
22 schema:sdDatePublished 2019-04-11T01:11
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N59b5ba7890084c92928f3833e75c6669
25 schema:url http://link.springer.com/10.1007%2Fs004420100716
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N15ef866bed334f3ba6c4db01e159f7b3 schema:volumeNumber 129
30 rdf:type schema:PublicationVolume
31 N3ce431f443a14b6caeede4b43da6975b schema:name readcube_id
32 schema:value 6886f69629a402b1be0c6dadb94830d40854895a76201081a8a44965564e5747
33 rdf:type schema:PropertyValue
34 N59b5ba7890084c92928f3833e75c6669 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N5d4a0c5647b04725b08d507bd74cf8e0 schema:name pubmed_id
37 schema:value 28547606
38 rdf:type schema:PropertyValue
39 N68474c7f16644f1fb719b661d6513b43 rdf:first sg:person.016530330145.74
40 rdf:rest rdf:nil
41 N7312f8087e54409cb9e4a9c7793e4947 schema:name doi
42 schema:value 10.1007/s004420100716
43 rdf:type schema:PropertyValue
44 N9075a9e898d3431a9a3dcdf013be43e9 schema:name dimensions_id
45 schema:value pub.1021940115
46 rdf:type schema:PropertyValue
47 Naaefa5533e1a4e7ebc8da56341f5ab9b schema:name nlm_unique_id
48 schema:value 0150372
49 rdf:type schema:PropertyValue
50 Nd2c5e08fa88c4dad87527d09f6b2586e schema:issueNumber 2
51 rdf:type schema:PublicationIssue
52 Nd2f80532c2014fe0994ee4baffc0d6c3 rdf:first sg:person.011150411053.39
53 rdf:rest N68474c7f16644f1fb719b661d6513b43
54 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
55 schema:name Environmental Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
58 schema:name Environmental Science and Management
59 rdf:type schema:DefinedTerm
60 sg:journal.1009586 schema:issn 0029-8549
61 1432-1939
62 schema:name Oecologia
63 rdf:type schema:Periodical
64 sg:person.011150411053.39 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
65 schema:familyName Legendre
66 schema:givenName Pierre
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39
68 rdf:type schema:Person
69 sg:person.016530330145.74 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
70 schema:familyName Gallagher
71 schema:givenName Eugene D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74
73 rdf:type schema:Person
74 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
75 schema:name Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, H3C 3J7, Montréal, Québec, Canada
76 rdf:type schema:Organization
77 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
78 schema:name Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...