Ecologically meaningful transformations for ordination of species data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-10

AUTHORS

Pierre Legendre, Eugene D. Gallagher

ABSTRACT

This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning. More... »

PAGES

271-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004420100716

DOI

http://dx.doi.org/10.1007/s004420100716

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021940115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28547606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "D\u00e9partement de sciences biologiques, Universit\u00e9 de Montr\u00e9al, C.P. 6128, succursale Centre-ville, H3C 3J7, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legendre", 
        "givenName": "Pierre", 
        "id": "sg:person.011150411053.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Boston", 
          "id": "https://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallagher", 
        "givenName": "Eugene D.", 
        "id": "sg:person.016530330145.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-10", 
    "datePublishedReg": "2001-10-01", 
    "description": "This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004420100716", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1009586", 
        "issn": [
          "0029-8549", 
          "1432-1939"
        ], 
        "name": "Oecologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Ecologically meaningful transformations for ordination of species data", 
    "pagination": "271-280", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6886f69629a402b1be0c6dadb94830d40854895a76201081a8a44965564e5747"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28547606"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0150372"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004420100716"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021940115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004420100716", 
      "https://app.dimensions.ai/details/publication/pub.1021940115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs004420100716"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004420100716'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      29 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004420100716 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N7d80a0b68d084e9083d3d139aecfeeb2
4 schema:datePublished 2001-10
5 schema:datePublishedReg 2001-10-01
6 schema:description This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N8566a8f6022a4e6a9166eb9057f67e21
11 Nfe21696eb8a541edbc00ac6e79ee5fa0
12 sg:journal.1009586
13 schema:name Ecologically meaningful transformations for ordination of species data
14 schema:pagination 271-280
15 schema:productId N60c26eeabbd344fb8ec08662843b03d1
16 N79fbb81f377c4096b7de53277754f066
17 N948a95bd02bd4aec9193a576fe821401
18 Nb8baf93e2ee847b5abc6c3d09e5ba6bd
19 Ne7c210842bcd4d11911c89b915ee0f97
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940115
21 https://doi.org/10.1007/s004420100716
22 schema:sdDatePublished 2019-04-11T01:11
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N1cc89325c96540189dd3e9718425eb16
25 schema:url http://link.springer.com/10.1007%2Fs004420100716
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1cc89325c96540189dd3e9718425eb16 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N60c26eeabbd344fb8ec08662843b03d1 schema:name doi
32 schema:value 10.1007/s004420100716
33 rdf:type schema:PropertyValue
34 N79fbb81f377c4096b7de53277754f066 schema:name dimensions_id
35 schema:value pub.1021940115
36 rdf:type schema:PropertyValue
37 N7d80a0b68d084e9083d3d139aecfeeb2 rdf:first sg:person.011150411053.39
38 rdf:rest Nf6008e62be974cec8832c856ebe8570e
39 N8566a8f6022a4e6a9166eb9057f67e21 schema:issueNumber 2
40 rdf:type schema:PublicationIssue
41 N948a95bd02bd4aec9193a576fe821401 schema:name readcube_id
42 schema:value 6886f69629a402b1be0c6dadb94830d40854895a76201081a8a44965564e5747
43 rdf:type schema:PropertyValue
44 Nb8baf93e2ee847b5abc6c3d09e5ba6bd schema:name pubmed_id
45 schema:value 28547606
46 rdf:type schema:PropertyValue
47 Ne7c210842bcd4d11911c89b915ee0f97 schema:name nlm_unique_id
48 schema:value 0150372
49 rdf:type schema:PropertyValue
50 Nf6008e62be974cec8832c856ebe8570e rdf:first sg:person.016530330145.74
51 rdf:rest rdf:nil
52 Nfe21696eb8a541edbc00ac6e79ee5fa0 schema:volumeNumber 129
53 rdf:type schema:PublicationVolume
54 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
55 schema:name Environmental Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
58 schema:name Environmental Science and Management
59 rdf:type schema:DefinedTerm
60 sg:journal.1009586 schema:issn 0029-8549
61 1432-1939
62 schema:name Oecologia
63 rdf:type schema:Periodical
64 sg:person.011150411053.39 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
65 schema:familyName Legendre
66 schema:givenName Pierre
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011150411053.39
68 rdf:type schema:Person
69 sg:person.016530330145.74 schema:affiliation https://www.grid.ac/institutes/grid.266685.9
70 schema:familyName Gallagher
71 schema:givenName Eugene D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74
73 rdf:type schema:Person
74 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
75 schema:name Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, H3C 3J7, Montréal, Québec, Canada
76 rdf:type schema:Organization
77 https://www.grid.ac/institutes/grid.266685.9 schema:alternateName University of Massachusetts Boston
78 schema:name Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...