Top-down effects of an invasive omnivore: detection in long-term monitoring of large-river reservoir chlorophyll-a View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-29

AUTHORS

Benjamin B. Tumolo, Michael B. Flinn

ABSTRACT

Invasive species are capable of altering ecosystems through the consumption of basal resources. However, quantifying the effects of invasive species in large ecosystems is challenging. Measuring changes in basal resources (i.e., phytoplankton) at an ecosystem scale is an important and potentially translatable response vital to the understanding of how introduced species influence ecosystems. In this study, we analyzed patterns of early summer chlorophyll-a in a large-river reservoir in response to invasion of silver carp (Hypophthalmichthys molitrix). We used 25 years of ecological data from a 30-km reach of Kentucky Lake collected before and after silver carp establishment. We found significant decreases in chlorophyll-a within certain reservoir habitats since establishment of silver carp. Additionally, environmental and biological drivers of phytoplankton production showed no significant differences before and after invasion. These results suggest seasonal, and habitat-specific consumptive effects of invasive silver carp on an important basal food web resource. Further, our results convey the utility of long-term quantitative biological and physiochemical data in understanding ecosystem responses to elements of global change (i.e., species invasions). Importantly, the observed changes in the basal food web resource of Kentucky Lake may apply to other ecosystems facing invasion by silver carp (e.g., Laurentian Great Lakes). Our study offers insight into the mechanisms by which silver carp may influence ecosystems and furthers our understanding of invasive omnivores. More... »

PAGES

293-303

References to SciGraph publications

  • 1997-03. Phytoplankton community response to reservoir aging, 1968–92 in HYDROBIOLOGIA
  • 2014-10-05. Quantifying the top-down and bottom-up effects of a non-native grazer in freshwaters in BIOLOGICAL INVASIONS
  • 2006-06. Biodiversity and ecosystem stability in a decade-long grassland experiment in NATURE
  • 2011-11-05. Linking silver carp habitat selection to flow and phytoplankton in the Mississippi River in BIOLOGICAL INVASIONS
  • 1988-05. Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass in HYDROBIOLOGIA
  • 2008-05-31. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers in BIOLOGICAL INVASIONS
  • 2014-05-07. Does stocking of filter-feeding fish for production have a cascading effect on zooplankton and ecological state? A study of fourteen (sub)tropical Chinese reservoirs with contrasting nutrient concentrations in HYDROBIOLOGIA
  • 2002-11. Experimental study of trophic cascade effect of silver carp (Hypophthalmichthys molitrixon) in a subtropical lake, Lake Donghu: on plankton community and underlying mechanisms of changes of crustacean community in HYDROBIOLOGIA
  • 2009-04-04. A mark-recapture population estimate for invasive silver carp (Hypophthalmichthys molitrix) in the La Grange Reach, Illinois River in BIOLOGICAL INVASIONS
  • 2002-08. Factors regulating autotrophy and heterotrophy in the main channel and an embayment of a large river impoundment in AQUATIC ECOLOGY
  • 2016-06-02. Long-term changes in fish community structure in relation to the establishment of Asian carps in a large floodplain river in BIOLOGICAL INVASIONS
  • 1999-09. Stable isotope evidence for the food web consequences of species invasions in lakes in NATURE
  • 2004-05. Predator diversity dampens trophic cascades in NATURE
  • 1998-07. Whole-Ecosystem Experiments: Replication Versus Realism: The Need for Ecosystem-Scale Experiments in ECOSYSTEMS
  • 1993-04. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoá Reservoir (Brasília, Brazil): a mesocosm experiment in HYDROBIOLOGIA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00442-017-3937-x

    DOI

    http://dx.doi.org/10.1007/s00442-017-3937-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091382924

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28852870


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carps", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chlorophyll", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chlorophyll A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Food Chain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Introduced Species", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kentucky", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lakes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phytoplankton", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rivers", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Ecology, Montana State University, P.O. Box 173460, 59717-3460, Bozeman, MT, USA", 
              "id": "http://www.grid.ac/institutes/grid.41891.35", 
              "name": [
                "Watershed Studies Institute, Murray State University, 42071, Murray, KY, USA", 
                "Hancock Biological Station, Murray State University, 42071, Murray, KY, USA", 
                "Department of Ecology, Montana State University, P.O. Box 173460, 59717-3460, Bozeman, MT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tumolo", 
            "givenName": "Benjamin B.", 
            "id": "sg:person.013116735057.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116735057.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Murray State University, 2112 Biology Building, 42071, Murray, KY, USA", 
              "id": "http://www.grid.ac/institutes/grid.214409.a", 
              "name": [
                "Watershed Studies Institute, Murray State University, 42071, Murray, KY, USA", 
                "Department of Biological Sciences, Murray State University, 2112 Biology Building, 42071, Murray, KY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flinn", 
            "givenName": "Michael B.", 
            "id": "sg:person.01157261634.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157261634.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10530-014-0793-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042571498", 
              "https://doi.org/10.1007/s10530-014-0793-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1002978302479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004278129", 
              "https://doi.org/10.1023/a:1002978302479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10530-016-1180-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050637565", 
              "https://doi.org/10.1007/s10530-016-1180-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00765007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031290536", 
              "https://doi.org/10.1007/bf00765007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013845364", 
              "https://doi.org/10.1038/nature04742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10750-014-1896-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011483153", 
              "https://doi.org/10.1007/s10750-014-1896-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10530-008-9265-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040866075", 
              "https://doi.org/10.1007/s10530-008-9265-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100219900026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020864265", 
              "https://doi.org/10.1007/s100219900026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10530-011-0128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051226612", 
              "https://doi.org/10.1007/s10530-011-0128-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016515518032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047659910", 
              "https://doi.org/10.1023/a:1016515518032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022940716736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008772965", 
              "https://doi.org/10.1023/a:1022940716736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10530-009-9462-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040025781", 
              "https://doi.org/10.1007/s10530-009-9462-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029953539", 
              "https://doi.org/10.1038/nature02554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00014539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027332271", 
              "https://doi.org/10.1007/bf00014539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039400335", 
              "https://doi.org/10.1038/46762"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-29", 
        "datePublishedReg": "2017-08-29", 
        "description": "Invasive species are capable of altering ecosystems  through the consumption of basal resources. However, quantifying the effects of invasive species in large ecosystems is challenging. Measuring changes in basal resources (i.e., phytoplankton) at an ecosystem scale is an important and potentially translatable response vital to the understanding of how introduced species influence ecosystems. In this  study, we analyzed patterns of early summer chlorophyll-a in a large-river reservoir in response to invasion of silver carp (Hypophthalmichthys molitrix). We used 25\u00a0years of ecological data from a 30-km reach of Kentucky Lake collected before and after silver carp establishment. We found significant decreases in chlorophyll-a within certain reservoir habitats since establishment of silver carp. Additionally, environmental and biological drivers of phytoplankton production showed no significant differences before and after invasion. These results suggest seasonal, and habitat-specific consumptive  effects of invasive silver carp on an important basal food web resource. Further, our results convey the utility of long-term quantitative biological and physiochemical data in understanding ecosystem responses to elements of global change (i.e., species invasions). Importantly, the observed changes in the basal food web resource of Kentucky Lake may apply to other ecosystems facing invasion by silver carp (e.g., Laurentian Great Lakes). Our study offers insight into the mechanisms by which silver carp may influence ecosystems and furthers our understanding of invasive omnivores.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00442-017-3937-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1009586", 
            "issn": [
              "0029-8549", 
              "1432-1939"
            ], 
            "name": "Oecologia", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "185"
          }
        ], 
        "keywords": [
          "invasive omnivores", 
          "silver carp", 
          "invasive species", 
          "basal resources", 
          "invasive silver carp", 
          "Kentucky Lake", 
          "long-term monitoring", 
          "influences ecosystem", 
          "ecosystem responses", 
          "ecosystem scale", 
          "large ecosystems", 
          "ecological data", 
          "reservoir habitats", 
          "global change", 
          "ecosystems", 
          "biological drivers", 
          "summer chlorophyll", 
          "phytoplankton production", 
          "physiochemical data", 
          "omnivores", 
          "lakes", 
          "species", 
          "carp", 
          "chlorophyll", 
          "invasion", 
          "resources", 
          "observed changes", 
          "habitats", 
          "establishment", 
          "web resources", 
          "reach", 
          "drivers", 
          "changes", 
          "reservoir", 
          "response", 
          "monitoring", 
          "scale", 
          "understanding", 
          "patterns", 
          "effect", 
          "insights", 
          "mechanism", 
          "production", 
          "data", 
          "significant differences", 
          "study", 
          "results", 
          "years", 
          "significant decrease", 
          "differences", 
          "decrease", 
          "elements", 
          "consumption", 
          "utility", 
          "Further", 
          "detection"
        ], 
        "name": "Top-down effects of an invasive omnivore: detection in long-term monitoring of large-river reservoir chlorophyll-a", 
        "pagination": "293-303", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091382924"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00442-017-3937-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28852870"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00442-017-3937-x", 
          "https://app.dimensions.ai/details/publication/pub.1091382924"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_725.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00442-017-3937-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00442-017-3937-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00442-017-3937-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00442-017-3937-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00442-017-3937-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    234 TRIPLES      21 PREDICATES      107 URIs      84 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00442-017-3937-x schema:about N04e6ec5e46ae44cbb19e6867c0eb6aa8
    2 N1006b232b7114797898bf7b4f6998e8f
    3 N25c9f93c0ce84324acbb27db46d4dcbe
    4 N2e3e7b0f192f4e8e899616e072448d56
    5 N62af8738ffd44e0c99fd474568791a1c
    6 N6b1fa32a609342e9a5fcf3193622e2be
    7 N7e154e94ddf949bdae6747a2a72d04e8
    8 Nad66baf4c86e43abae7f1ab59df82055
    9 Nc386c5cbec0340ff91652595c13d906a
    10 Ndd6c5339731846e8b416a16741dba384
    11 Nfe8b5a078eab474684276769c65231c1
    12 anzsrc-for:06
    13 anzsrc-for:0602
    14 schema:author N3e4afa840d514a7ebe8dcf32be6bab45
    15 schema:citation sg:pub.10.1007/bf00014539
    16 sg:pub.10.1007/bf00765007
    17 sg:pub.10.1007/s100219900026
    18 sg:pub.10.1007/s10530-008-9265-7
    19 sg:pub.10.1007/s10530-009-9462-z
    20 sg:pub.10.1007/s10530-011-0128-2
    21 sg:pub.10.1007/s10530-014-0793-z
    22 sg:pub.10.1007/s10530-016-1180-8
    23 sg:pub.10.1007/s10750-014-1896-3
    24 sg:pub.10.1023/a:1002978302479
    25 sg:pub.10.1023/a:1016515518032
    26 sg:pub.10.1023/a:1022940716736
    27 sg:pub.10.1038/46762
    28 sg:pub.10.1038/nature02554
    29 sg:pub.10.1038/nature04742
    30 schema:datePublished 2017-08-29
    31 schema:datePublishedReg 2017-08-29
    32 schema:description Invasive species are capable of altering ecosystems through the consumption of basal resources. However, quantifying the effects of invasive species in large ecosystems is challenging. Measuring changes in basal resources (i.e., phytoplankton) at an ecosystem scale is an important and potentially translatable response vital to the understanding of how introduced species influence ecosystems. In this study, we analyzed patterns of early summer chlorophyll-a in a large-river reservoir in response to invasion of silver carp (Hypophthalmichthys molitrix). We used 25 years of ecological data from a 30-km reach of Kentucky Lake collected before and after silver carp establishment. We found significant decreases in chlorophyll-a within certain reservoir habitats since establishment of silver carp. Additionally, environmental and biological drivers of phytoplankton production showed no significant differences before and after invasion. These results suggest seasonal, and habitat-specific consumptive effects of invasive silver carp on an important basal food web resource. Further, our results convey the utility of long-term quantitative biological and physiochemical data in understanding ecosystem responses to elements of global change (i.e., species invasions). Importantly, the observed changes in the basal food web resource of Kentucky Lake may apply to other ecosystems facing invasion by silver carp (e.g., Laurentian Great Lakes). Our study offers insight into the mechanisms by which silver carp may influence ecosystems and furthers our understanding of invasive omnivores.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Na7dd47dd150f49a285a6a966e1f4a8ec
    36 Nfecf98eb905245f5ac8026c315fc686f
    37 sg:journal.1009586
    38 schema:keywords Further
    39 Kentucky Lake
    40 basal resources
    41 biological drivers
    42 carp
    43 changes
    44 chlorophyll
    45 consumption
    46 data
    47 decrease
    48 detection
    49 differences
    50 drivers
    51 ecological data
    52 ecosystem responses
    53 ecosystem scale
    54 ecosystems
    55 effect
    56 elements
    57 establishment
    58 global change
    59 habitats
    60 influences ecosystem
    61 insights
    62 invasion
    63 invasive omnivores
    64 invasive silver carp
    65 invasive species
    66 lakes
    67 large ecosystems
    68 long-term monitoring
    69 mechanism
    70 monitoring
    71 observed changes
    72 omnivores
    73 patterns
    74 physiochemical data
    75 phytoplankton production
    76 production
    77 reach
    78 reservoir
    79 reservoir habitats
    80 resources
    81 response
    82 results
    83 scale
    84 significant decrease
    85 significant differences
    86 silver carp
    87 species
    88 study
    89 summer chlorophyll
    90 understanding
    91 utility
    92 web resources
    93 years
    94 schema:name Top-down effects of an invasive omnivore: detection in long-term monitoring of large-river reservoir chlorophyll-a
    95 schema:pagination 293-303
    96 schema:productId Na95c1aaeccb0449a8bfcf1a466005788
    97 Nce988cd6e4fb48bab346ed6505920f87
    98 Ndda28a873b7b49578b40500f052339d2
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091382924
    100 https://doi.org/10.1007/s00442-017-3937-x
    101 schema:sdDatePublished 2022-12-01T06:35
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher N8471d60cf6424b2390a9c433509fbbe3
    104 schema:url https://doi.org/10.1007/s00442-017-3937-x
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N04e6ec5e46ae44cbb19e6867c0eb6aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Kentucky
    110 rdf:type schema:DefinedTerm
    111 N1006b232b7114797898bf7b4f6998e8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Phytoplankton
    113 rdf:type schema:DefinedTerm
    114 N25c9f93c0ce84324acbb27db46d4dcbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Chlorophyll
    116 rdf:type schema:DefinedTerm
    117 N2e3e7b0f192f4e8e899616e072448d56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Chlorophyll A
    119 rdf:type schema:DefinedTerm
    120 N3e4afa840d514a7ebe8dcf32be6bab45 rdf:first sg:person.013116735057.20
    121 rdf:rest N6934865721004737a1331f989e007790
    122 N62af8738ffd44e0c99fd474568791a1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Food Chain
    124 rdf:type schema:DefinedTerm
    125 N6934865721004737a1331f989e007790 rdf:first sg:person.01157261634.06
    126 rdf:rest rdf:nil
    127 N6b1fa32a609342e9a5fcf3193622e2be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Introduced Species
    129 rdf:type schema:DefinedTerm
    130 N7e154e94ddf949bdae6747a2a72d04e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Carps
    132 rdf:type schema:DefinedTerm
    133 N8471d60cf6424b2390a9c433509fbbe3 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 Na7dd47dd150f49a285a6a966e1f4a8ec schema:issueNumber 2
    136 rdf:type schema:PublicationIssue
    137 Na95c1aaeccb0449a8bfcf1a466005788 schema:name doi
    138 schema:value 10.1007/s00442-017-3937-x
    139 rdf:type schema:PropertyValue
    140 Nad66baf4c86e43abae7f1ab59df82055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Databases, Factual
    142 rdf:type schema:DefinedTerm
    143 Nc386c5cbec0340ff91652595c13d906a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Animals
    145 rdf:type schema:DefinedTerm
    146 Nce988cd6e4fb48bab346ed6505920f87 schema:name dimensions_id
    147 schema:value pub.1091382924
    148 rdf:type schema:PropertyValue
    149 Ndd6c5339731846e8b416a16741dba384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Rivers
    151 rdf:type schema:DefinedTerm
    152 Ndda28a873b7b49578b40500f052339d2 schema:name pubmed_id
    153 schema:value 28852870
    154 rdf:type schema:PropertyValue
    155 Nfe8b5a078eab474684276769c65231c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Lakes
    157 rdf:type schema:DefinedTerm
    158 Nfecf98eb905245f5ac8026c315fc686f schema:volumeNumber 185
    159 rdf:type schema:PublicationVolume
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Ecology
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1009586 schema:issn 0029-8549
    167 1432-1939
    168 schema:name Oecologia
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01157261634.06 schema:affiliation grid-institutes:grid.214409.a
    172 schema:familyName Flinn
    173 schema:givenName Michael B.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157261634.06
    175 rdf:type schema:Person
    176 sg:person.013116735057.20 schema:affiliation grid-institutes:grid.41891.35
    177 schema:familyName Tumolo
    178 schema:givenName Benjamin B.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116735057.20
    180 rdf:type schema:Person
    181 sg:pub.10.1007/bf00014539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332271
    182 https://doi.org/10.1007/bf00014539
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00765007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031290536
    185 https://doi.org/10.1007/bf00765007
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s100219900026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020864265
    188 https://doi.org/10.1007/s100219900026
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10530-008-9265-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040866075
    191 https://doi.org/10.1007/s10530-008-9265-7
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10530-009-9462-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040025781
    194 https://doi.org/10.1007/s10530-009-9462-z
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10530-011-0128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051226612
    197 https://doi.org/10.1007/s10530-011-0128-2
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10530-014-0793-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042571498
    200 https://doi.org/10.1007/s10530-014-0793-z
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10530-016-1180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637565
    203 https://doi.org/10.1007/s10530-016-1180-8
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10750-014-1896-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483153
    206 https://doi.org/10.1007/s10750-014-1896-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1023/a:1002978302479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004278129
    209 https://doi.org/10.1023/a:1002978302479
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1023/a:1016515518032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047659910
    212 https://doi.org/10.1023/a:1016515518032
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1023/a:1022940716736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008772965
    215 https://doi.org/10.1023/a:1022940716736
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/46762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039400335
    218 https://doi.org/10.1038/46762
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature02554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029953539
    221 https://doi.org/10.1038/nature02554
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature04742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013845364
    224 https://doi.org/10.1038/nature04742
    225 rdf:type schema:CreativeWork
    226 grid-institutes:grid.214409.a schema:alternateName Department of Biological Sciences, Murray State University, 2112 Biology Building, 42071, Murray, KY, USA
    227 schema:name Department of Biological Sciences, Murray State University, 2112 Biology Building, 42071, Murray, KY, USA
    228 Watershed Studies Institute, Murray State University, 42071, Murray, KY, USA
    229 rdf:type schema:Organization
    230 grid-institutes:grid.41891.35 schema:alternateName Department of Ecology, Montana State University, P.O. Box 173460, 59717-3460, Bozeman, MT, USA
    231 schema:name Department of Ecology, Montana State University, P.O. Box 173460, 59717-3460, Bozeman, MT, USA
    232 Hancock Biological Station, Murray State University, 42071, Murray, KY, USA
    233 Watershed Studies Institute, Murray State University, 42071, Murray, KY, USA
    234 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...