Stochastic analysis, rough path analysis and fractional Brownian motions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

Laure Coutin, Zhongmin Qian

ABSTRACT

. In this paper we show, by using dyadic approximations, the existence of a geometric rough path associated with a fractional Brownian motion with Hurst parameter greater than 1/4. Using the integral representation of fractional Brownian motions, we furthermore obtain a Skohorod integral representation of the geometric rough path we constructed. By the results in [Ly1], a stochastic integration theory may be established for fractional Brownian motions, and strong solutions and a Wong-Zakai type limit theorem for stochastic differential equations driven by fractional Brownian motions can be deduced accordingly. The method can actually be applied to a larger class of Gaussian processes with covariance functions satisfying a simple decay condition. More... »

PAGES

108-140

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004400100158

DOI

http://dx.doi.org/10.1007/s004400100158

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043723250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CNRS and Universit\u00e9 Paul-Sabatier, Laboratoire de Statistique et Probabilit\u00e9s, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS and Universit\u00e9 Paul-Sabatier, Laboratoire de Statistique et Probabilit\u00e9s, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coutin", 
        "givenName": "Laure", 
        "id": "sg:person.014370404363.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014370404363.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS and Universit\u00e9 Paul-Sabatier, Laboratoire de Statistique et Probabilit\u00e9s, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS and Universit\u00e9 Paul-Sabatier, Laboratoire de Statistique et Probabilit\u00e9s, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Zhongmin", 
        "id": "sg:person.013211517556.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211517556.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "Abstract.\u2002In this paper we show, by using dyadic approximations, the existence of a geometric rough path associated with a fractional Brownian motion with Hurst parameter greater than 1/4. Using the integral representation of fractional Brownian motions, we furthermore obtain a Skohorod integral representation of the geometric rough path we constructed. By the results in [Ly1], a stochastic integration theory may be established for fractional Brownian motions, and strong solutions and a Wong-Zakai type limit theorem for stochastic differential equations driven by fractional Brownian motions can be deduced accordingly. The method can actually be applied to a larger class of Gaussian processes with covariance functions satisfying a simple decay condition.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s004400100158", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "keywords": [
      "fractional Brownian motion", 
      "geometric rough paths", 
      "Brownian motion", 
      "rough paths", 
      "integral representation", 
      "stochastic integration theory", 
      "stochastic differential equations", 
      "rough path analysis", 
      "differential equations", 
      "dyadic approximations", 
      "stochastic analysis", 
      "Hurst parameter", 
      "limit theorem", 
      "strong solutions", 
      "covariance function", 
      "Gaussian process", 
      "large class", 
      "decay conditions", 
      "motion", 
      "integration theory", 
      "theorem", 
      "equations", 
      "approximation", 
      "representation", 
      "theory", 
      "path", 
      "existence", 
      "solution", 
      "class", 
      "parameters", 
      "function", 
      "analysis", 
      "conditions", 
      "results", 
      "process", 
      "path analysis", 
      "paper", 
      "method"
    ], 
    "name": "Stochastic analysis, rough path analysis and fractional Brownian motions", 
    "pagination": "108-140", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043723250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004400100158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004400100158", 
      "https://app.dimensions.ai/details/publication/pub.1043723250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_356.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s004400100158"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004400100158'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004400100158'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004400100158'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004400100158'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      20 PREDICATES      63 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004400100158 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4ce00bc35c7d4c53b41bf1b43430832a
4 schema:datePublished 2002-01
5 schema:datePublishedReg 2002-01-01
6 schema:description Abstract. In this paper we show, by using dyadic approximations, the existence of a geometric rough path associated with a fractional Brownian motion with Hurst parameter greater than 1/4. Using the integral representation of fractional Brownian motions, we furthermore obtain a Skohorod integral representation of the geometric rough path we constructed. By the results in [Ly1], a stochastic integration theory may be established for fractional Brownian motions, and strong solutions and a Wong-Zakai type limit theorem for stochastic differential equations driven by fractional Brownian motions can be deduced accordingly. The method can actually be applied to a larger class of Gaussian processes with covariance functions satisfying a simple decay condition.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N0afefb97665d4422a388a32bc713042e
10 Nb7d605aab43c4b408ca33d5ea7923640
11 sg:journal.1053886
12 schema:keywords Brownian motion
13 Gaussian process
14 Hurst parameter
15 analysis
16 approximation
17 class
18 conditions
19 covariance function
20 decay conditions
21 differential equations
22 dyadic approximations
23 equations
24 existence
25 fractional Brownian motion
26 function
27 geometric rough paths
28 integral representation
29 integration theory
30 large class
31 limit theorem
32 method
33 motion
34 paper
35 parameters
36 path
37 path analysis
38 process
39 representation
40 results
41 rough path analysis
42 rough paths
43 solution
44 stochastic analysis
45 stochastic differential equations
46 stochastic integration theory
47 strong solutions
48 theorem
49 theory
50 schema:name Stochastic analysis, rough path analysis and fractional Brownian motions
51 schema:pagination 108-140
52 schema:productId N0f0089be3dd54ca8894c1e451b81a0b1
53 N3b41d0cc3d0a421bb54d32e0cabe680f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043723250
55 https://doi.org/10.1007/s004400100158
56 schema:sdDatePublished 2022-09-02T15:49
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N1c5d50e814cf46bb900d610cb315b48e
59 schema:url https://doi.org/10.1007/s004400100158
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N023f09f0cb2443dcbbc4b7b487797e9a rdf:first sg:person.013211517556.16
64 rdf:rest rdf:nil
65 N0afefb97665d4422a388a32bc713042e schema:volumeNumber 122
66 rdf:type schema:PublicationVolume
67 N0f0089be3dd54ca8894c1e451b81a0b1 schema:name doi
68 schema:value 10.1007/s004400100158
69 rdf:type schema:PropertyValue
70 N1c5d50e814cf46bb900d610cb315b48e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N3b41d0cc3d0a421bb54d32e0cabe680f schema:name dimensions_id
73 schema:value pub.1043723250
74 rdf:type schema:PropertyValue
75 N4ce00bc35c7d4c53b41bf1b43430832a rdf:first sg:person.014370404363.55
76 rdf:rest N023f09f0cb2443dcbbc4b7b487797e9a
77 Nb7d605aab43c4b408ca33d5ea7923640 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1053886 schema:issn 0178-8051
86 1432-2064
87 schema:name Probability Theory and Related Fields
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.013211517556.16 schema:affiliation grid-institutes:None
91 schema:familyName Qian
92 schema:givenName Zhongmin
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211517556.16
94 rdf:type schema:Person
95 sg:person.014370404363.55 schema:affiliation grid-institutes:None
96 schema:familyName Coutin
97 schema:givenName Laure
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014370404363.55
99 rdf:type schema:Person
100 grid-institutes:None schema:alternateName CNRS and Université Paul-Sabatier, Laboratoire de Statistique et Probabilités, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR
101 schema:name CNRS and Université Paul-Sabatier, Laboratoire de Statistique et Probabilités, 118 Route de Narbonne, 31062 Toulouse, France. e-mail: coutin@cict.fr; qian@cict.fr, FR
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...