ρ-White noise solution to 2D stochastic Euler equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-21

AUTHORS

Franco Flandoli, Dejun Luo

ABSTRACT

A stochastic version of 2D Euler equations with transport type noise in the vorticity is considered, in the framework of Albeverio–Cruzeiro theory (Commun Math Phys 129:431–444, 1990) where the equation is considered with random initial conditions related to the so called enstrophy measure. The equation is studied by an approximation scheme based on random point vortices. Stochastic processes solving the Euler equations are constructed and their density with respect to the enstrophy measure is proved to satisfy a Fokker–Planck equation in weak form. Relevant in comparison with the case without noise is the fact that here we prove a gradient type estimate for the density. Although we cannot prove uniqueness for the Fokker–Planck equation, we discuss how the gradient type estimate may be related to this open problem. More... »

PAGES

1-50

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00440-019-00902-8

DOI

http://dx.doi.org/10.1007/s00440-019-00902-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112282940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore of Pisa, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flandoli", 
        "givenName": "Franco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Mathematical Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Dejun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-75914-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000705398", 
          "https://doi.org/10.1007/978-3-540-75914-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75914-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000705398", 
          "https://doi.org/10.1007/978-3-540-75914-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spa.2011.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spa.2011.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005845628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605302.2010.539657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017058147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-015-0957-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020902573", 
          "https://doi.org/10.1007/s00205-015-0957-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022344628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1999.3430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023329116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0312(199609)49:9<911::aid-cpa2>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026462074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01393835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026771304", 
          "https://doi.org/10.1007/bf01393835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40072-014-0031-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030870676", 
          "https://doi.org/10.1007/s40072-014-0031-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033028336", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4284-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033028336", 
          "https://doi.org/10.1007/978-1-4612-4284-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4284-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033028336", 
          "https://doi.org/10.1007/978-1-4612-4284-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-004-0367-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036546922", 
          "https://doi.org/10.1007/s00222-004-0367-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-004-0367-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036546922", 
          "https://doi.org/10.1007/s00222-004-0367-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2014.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036814022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18231-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039648968", 
          "https://doi.org/10.1007/978-3-642-18231-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18231-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039648968", 
          "https://doi.org/10.1007/978-3-642-18231-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bulsci.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046104424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2008.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048692847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(84)90047-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048888378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051613965", 
          "https://doi.org/10.1007/bf02097100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051613965", 
          "https://doi.org/10.1007/bf02097100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053563935", 
          "https://doi.org/10.1007/bf01762360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053563935", 
          "https://doi.org/10.1007/bf01762360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/apde.2014.7.1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-63453-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092781407", 
          "https://doi.org/10.1007/978-3-319-63453-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489376", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605302.2018.1467448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112039657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-21", 
    "datePublishedReg": "2019-02-21", 
    "description": "A stochastic version of 2D Euler equations with transport type noise in the vorticity is considered, in the framework of Albeverio\u2013Cruzeiro theory (Commun Math Phys 129:431\u2013444, 1990) where the equation is considered with random initial conditions related to the so called enstrophy measure. The equation is studied by an approximation scheme based on random point vortices. Stochastic processes solving the Euler equations are constructed and their density with respect to the enstrophy measure is proved to satisfy a Fokker\u2013Planck equation in weak form. Relevant in comparison with the case without noise is the fact that here we prove a gradient type estimate for the density. Although we cannot prove uniqueness for the Fokker\u2013Planck equation, we discuss how the gradient type estimate may be related to this open problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00440-019-00902-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }
    ], 
    "name": "\u03c1-White noise solution to 2D stochastic Euler equations", 
    "pagination": "1-50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f063204456a8899a416ed0533d76fb425a7ab35d2fc2619ccb62b3dc9d5ef4d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00440-019-00902-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112282940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00440-019-00902-8", 
      "https://app.dimensions.ai/details/publication/pub.1112282940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99821_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00440-019-00902-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00440-019-00902-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00440-019-00902-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00440-019-00902-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00440-019-00902-8'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00440-019-00902-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd348ba0679474c24b69db5cd67abe9c1
4 schema:citation sg:pub.10.1007/978-1-4612-4284-0
5 sg:pub.10.1007/978-1-4612-5561-1
6 sg:pub.10.1007/978-3-319-63453-1_2
7 sg:pub.10.1007/978-3-540-75914-0_1
8 sg:pub.10.1007/978-3-642-18231-0
9 sg:pub.10.1007/bf01393835
10 sg:pub.10.1007/bf01762360
11 sg:pub.10.1007/bf02097100
12 sg:pub.10.1007/s00205-015-0957-8
13 sg:pub.10.1007/s00222-004-0367-2
14 sg:pub.10.1007/s40072-014-0031-9
15 https://app.dimensions.ai/details/publication/pub.1033028336
16 https://app.dimensions.ai/details/publication/pub.1109489376
17 https://doi.org/10.1002/(sici)1097-0312(199609)49:9<911::aid-cpa2>3.0.co;2-a
18 https://doi.org/10.1002/9780470316962
19 https://doi.org/10.1002/cpa.21476
20 https://doi.org/10.1006/jfan.1999.3430
21 https://doi.org/10.1016/0022-1236(84)90047-8
22 https://doi.org/10.1016/j.bulsci.2009.01.001
23 https://doi.org/10.1016/j.jfa.2008.05.007
24 https://doi.org/10.1016/j.jfa.2014.01.010
25 https://doi.org/10.1016/j.spa.2011.03.004
26 https://doi.org/10.1016/j.spa.2011.05.012
27 https://doi.org/10.1080/03605302.2010.539657
28 https://doi.org/10.1080/03605302.2018.1467448
29 https://doi.org/10.2140/apde.2014.7.1179
30 schema:datePublished 2019-02-21
31 schema:datePublishedReg 2019-02-21
32 schema:description A stochastic version of 2D Euler equations with transport type noise in the vorticity is considered, in the framework of Albeverio–Cruzeiro theory (Commun Math Phys 129:431–444, 1990) where the equation is considered with random initial conditions related to the so called enstrophy measure. The equation is studied by an approximation scheme based on random point vortices. Stochastic processes solving the Euler equations are constructed and their density with respect to the enstrophy measure is proved to satisfy a Fokker–Planck equation in weak form. Relevant in comparison with the case without noise is the fact that here we prove a gradient type estimate for the density. Although we cannot prove uniqueness for the Fokker–Planck equation, we discuss how the gradient type estimate may be related to this open problem.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1053886
37 schema:name ρ-White noise solution to 2D stochastic Euler equations
38 schema:pagination 1-50
39 schema:productId N1e3ed1a756e0445b9597fe4fa10de151
40 N67d35d4f131b427dbc736ed81e3e5302
41 N9197f420031b4383a419d20a5a7d3f00
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112282940
43 https://doi.org/10.1007/s00440-019-00902-8
44 schema:sdDatePublished 2019-04-11T09:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nfbc46ba8feaa400392ffba713515bf11
47 schema:url https://link.springer.com/10.1007%2Fs00440-019-00902-8
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1e3ed1a756e0445b9597fe4fa10de151 schema:name dimensions_id
52 schema:value pub.1112282940
53 rdf:type schema:PropertyValue
54 N220f1dab3ae74dbb9ec828a51d9ae7fd schema:affiliation https://www.grid.ac/institutes/grid.6093.c
55 schema:familyName Flandoli
56 schema:givenName Franco
57 rdf:type schema:Person
58 N4e0420c8b17b4ca4a9309e94ee9224de rdf:first Nea09ee71d12343b48d04529f4d4db594
59 rdf:rest rdf:nil
60 N67d35d4f131b427dbc736ed81e3e5302 schema:name readcube_id
61 schema:value f063204456a8899a416ed0533d76fb425a7ab35d2fc2619ccb62b3dc9d5ef4d1
62 rdf:type schema:PropertyValue
63 N9197f420031b4383a419d20a5a7d3f00 schema:name doi
64 schema:value 10.1007/s00440-019-00902-8
65 rdf:type schema:PropertyValue
66 Nd348ba0679474c24b69db5cd67abe9c1 rdf:first N220f1dab3ae74dbb9ec828a51d9ae7fd
67 rdf:rest N4e0420c8b17b4ca4a9309e94ee9224de
68 Nea09ee71d12343b48d04529f4d4db594 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
69 schema:familyName Luo
70 schema:givenName Dejun
71 rdf:type schema:Person
72 Nfbc46ba8feaa400392ffba713515bf11 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
78 schema:name Statistics
79 rdf:type schema:DefinedTerm
80 sg:journal.1053886 schema:issn 0178-8051
81 1432-2064
82 schema:name Probability Theory and Related Fields
83 rdf:type schema:Periodical
84 sg:pub.10.1007/978-1-4612-4284-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033028336
85 https://doi.org/10.1007/978-1-4612-4284-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
88 https://doi.org/10.1007/978-1-4612-5561-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-319-63453-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092781407
91 https://doi.org/10.1007/978-3-319-63453-1_2
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-540-75914-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000705398
94 https://doi.org/10.1007/978-3-540-75914-0_1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-18231-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648968
97 https://doi.org/10.1007/978-3-642-18231-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01393835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026771304
100 https://doi.org/10.1007/bf01393835
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01762360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053563935
103 https://doi.org/10.1007/bf01762360
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02097100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051613965
106 https://doi.org/10.1007/bf02097100
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00205-015-0957-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020902573
109 https://doi.org/10.1007/s00205-015-0957-8
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00222-004-0367-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036546922
112 https://doi.org/10.1007/s00222-004-0367-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s40072-014-0031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030870676
115 https://doi.org/10.1007/s40072-014-0031-9
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1033028336 schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1109489376 schema:CreativeWork
119 https://doi.org/10.1002/(sici)1097-0312(199609)49:9<911::aid-cpa2>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1026462074
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/9780470316962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489376
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/cpa.21476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022344628
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/jfan.1999.3430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023329116
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0022-1236(84)90047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048888378
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.bulsci.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046104424
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jfa.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048692847
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jfa.2014.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036814022
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.spa.2011.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005845628
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.spa.2011.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003463595
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/03605302.2010.539657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017058147
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/03605302.2018.1467448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112039657
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2140/apde.2014.7.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059501
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
146 schema:name RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
147 School of Mathematical Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
150 schema:name Scuola Normale Superiore of Pisa, Pisa, Italy
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...