Fundamental limits of symmetric low-rank matrix estimation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Marc Lelarge, Léo Miolane

ABSTRACT

We consider the high-dimensional inference problem where the signal is a low-rank symmetric matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the low-rank matrix, we compute the limit in the large dimension setting for the mutual information between the signal and the observations, as well as the matrix minimum mean squared error, while the rank of the signal remains constant. We also show that our model extends beyond the particular case of additive Gaussian noise and we prove an universality result connecting the community detection problem to our Gaussian framework. We unify and generalize a number of recent works on PCA, sparse PCA, submatrix localization or community detection by computing the information-theoretic limits for these problems in the high noise regime. In addition, we show that the posterior distribution of the signal given the observations is characterized by a parameter of the same dimension as the square of the rank of the signal (i.e. scalar in the case of rank one). This allows to locate precisely the information-theoretic thresholds for the above mentioned problems. Finally, we connect our work with the hard but detectable conjecture in statistical physics. More... »

PAGES

1-71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00440-018-0845-x

DOI

http://dx.doi.org/10.1007/s00440-018-0845-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103204637


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "D\u00e9partement d\u2019informatique de l\u2019ENS, \u00c9cole normale sup\u00e9rieure, CNRS, PSL Research University, 75005, Paris, France", 
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lelarge", 
        "givenName": "Marc", 
        "id": "sg:person.016213456237.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213456237.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "D\u00e9partement d\u2019informatique de l\u2019ENS, \u00c9cole normale sup\u00e9rieure, CNRS, PSL Research University, 75005, Paris, France", 
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miolane", 
        "givenName": "L\u00e9o", 
        "id": "sg:person.010554052127.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554052127.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-6289-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000983571", 
          "https://doi.org/10.1007/978-1-4614-6289-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6289-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000983571", 
          "https://doi.org/10.1007/978-1-4614-6289-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22253-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004111194", 
          "https://doi.org/10.1007/978-3-642-22253-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22253-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004111194", 
          "https://doi.org/10.1007/978-3-642-22253-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-009-9781-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841306", 
          "https://doi.org/10.1007/s10955-009-9781-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-009-9781-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841306", 
          "https://doi.org/10.1007/s10955-009-9781-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2011.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020111192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.066106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022276361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.066106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022276361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-0262.00296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024974292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-015-1338-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034110432", 
          "https://doi.org/10.1007/s10955-015-1338-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035833199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035833199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-002-0773-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040172373", 
          "https://doi.org/10.1007/s00220-002-0773-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-007-0209-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040289210", 
          "https://doi.org/10.1007/s00220-007-0209-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-007-0209-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040289210", 
          "https://doi.org/10.1007/s00220-007-0209-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018732.2016.1211393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041676048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/31/46/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046416720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ett.1289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046664220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117905000000233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047241984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/32/21/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048199778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-1059-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920179", 
          "https://doi.org/10.1007/s10107-016-1059-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-1059-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920179", 
          "https://doi.org/10.1007/s10107-016-1059-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imaiai/iaw017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059683467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.844072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2030457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2010.2070131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2112231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2011.2174959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117906000000575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3055399.3055420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091883863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnse.2017.2758201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092035963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2016.7541628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093171472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2015.7282733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093204823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2014.6875223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093339510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/allerton.2015.7447070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093374541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itw.2016.7606798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093542327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2015.7282642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093900309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2016.7541405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093923793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2012.6283056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094012116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2017.8006706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094674171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199535255.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098728789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198509417.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098731037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We consider the high-dimensional inference problem where the signal is a low-rank symmetric matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the low-rank matrix, we compute the limit in the large dimension setting for the mutual information between the signal and the observations, as well as the matrix minimum mean squared error, while the rank of the signal remains constant. We also show that our model extends beyond the particular case of additive Gaussian noise and we prove an universality result connecting the community detection problem to our Gaussian framework. We unify and generalize a number of recent works on PCA, sparse PCA, submatrix localization or community detection by computing the information-theoretic limits for these problems in the high noise regime. In addition, we show that the posterior distribution of the signal given the observations is characterized by a parameter of the same dimension as the square of the rank of the signal (i.e. scalar in the case of rank one). This allows to locate precisely the information-theoretic thresholds for the above mentioned problems. Finally, we connect our work with the hard but detectable conjecture in statistical physics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00440-018-0845-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "173"
      }
    ], 
    "name": "Fundamental limits of symmetric low-rank matrix estimation", 
    "pagination": "1-71", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00440-018-0845-x"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a9e151f5426eadead276b1902d9e873824ddbe84fd312dd73de3b13bbed837d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103204637"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00440-018-0845-x", 
      "https://app.dimensions.ai/details/publication/pub.1103204637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91428_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00440-018-0845-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00440-018-0845-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00440-018-0845-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00440-018-0845-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00440-018-0845-x'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00440-018-0845-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N361998c276124a73910e29e582180cc9
4 schema:citation sg:pub.10.1007/978-1-4614-6289-7
5 sg:pub.10.1007/978-3-642-22253-5
6 sg:pub.10.1007/s00220-002-0773-5
7 sg:pub.10.1007/s00220-007-0209-3
8 sg:pub.10.1007/s10107-016-1059-6
9 sg:pub.10.1007/s10955-009-9781-6
10 sg:pub.10.1007/s10955-015-1338-2
11 https://doi.org/10.1002/ett.1289
12 https://doi.org/10.1016/j.aim.2011.02.007
13 https://doi.org/10.1080/00018732.2016.1211393
14 https://doi.org/10.1088/0305-4470/31/46/006
15 https://doi.org/10.1088/0305-4470/32/21/302
16 https://doi.org/10.1093/acprof:oso/9780198509417.001.0001
17 https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
18 https://doi.org/10.1093/imaiai/iaw017
19 https://doi.org/10.1103/physrevb.68.214403
20 https://doi.org/10.1103/physreve.84.066106
21 https://doi.org/10.1109/allerton.2015.7447070
22 https://doi.org/10.1109/isit.2012.6283056
23 https://doi.org/10.1109/isit.2014.6875223
24 https://doi.org/10.1109/isit.2015.7282642
25 https://doi.org/10.1109/isit.2015.7282733
26 https://doi.org/10.1109/isit.2016.7541405
27 https://doi.org/10.1109/isit.2016.7541628
28 https://doi.org/10.1109/isit.2017.8006706
29 https://doi.org/10.1109/itw.2016.7606798
30 https://doi.org/10.1109/tit.2005.844072
31 https://doi.org/10.1109/tit.2009.2030457
32 https://doi.org/10.1109/tit.2010.2070131
33 https://doi.org/10.1109/tit.2011.2112231
34 https://doi.org/10.1109/tit.2011.2174959
35 https://doi.org/10.1109/tnse.2017.2758201
36 https://doi.org/10.1111/1468-0262.00296
37 https://doi.org/10.1145/3055399.3055420
38 https://doi.org/10.1214/009117905000000233
39 https://doi.org/10.1214/009117906000000575
40 schema:datePublished 2019-04
41 schema:datePublishedReg 2019-04-01
42 schema:description We consider the high-dimensional inference problem where the signal is a low-rank symmetric matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the low-rank matrix, we compute the limit in the large dimension setting for the mutual information between the signal and the observations, as well as the matrix minimum mean squared error, while the rank of the signal remains constant. We also show that our model extends beyond the particular case of additive Gaussian noise and we prove an universality result connecting the community detection problem to our Gaussian framework. We unify and generalize a number of recent works on PCA, sparse PCA, submatrix localization or community detection by computing the information-theoretic limits for these problems in the high noise regime. In addition, we show that the posterior distribution of the signal given the observations is characterized by a parameter of the same dimension as the square of the rank of the signal (i.e. scalar in the case of rank one). This allows to locate precisely the information-theoretic thresholds for the above mentioned problems. Finally, we connect our work with the hard but detectable conjecture in statistical physics.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N5ec4e4db376442a4805b1372f5b70f2c
47 N9050bfadccda4596a5ee6232b648b5b4
48 sg:journal.1053886
49 schema:name Fundamental limits of symmetric low-rank matrix estimation
50 schema:pagination 1-71
51 schema:productId N05fe715c7ddc41eca733020e7a5e9ae2
52 N160b28ed1b3a4e3fb893dcac04ea7ab7
53 Na1a0960fde57477d8002ec592e14d044
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103204637
55 https://doi.org/10.1007/s00440-018-0845-x
56 schema:sdDatePublished 2019-04-15T08:58
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N70e74ff364d746a48032f7920f932815
59 schema:url https://link.springer.com/10.1007%2Fs00440-018-0845-x
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N05fe715c7ddc41eca733020e7a5e9ae2 schema:name doi
64 schema:value 10.1007/s00440-018-0845-x
65 rdf:type schema:PropertyValue
66 N160b28ed1b3a4e3fb893dcac04ea7ab7 schema:name dimensions_id
67 schema:value pub.1103204637
68 rdf:type schema:PropertyValue
69 N1f447f960db84427a381920bd0e32903 rdf:first sg:person.010554052127.82
70 rdf:rest rdf:nil
71 N361998c276124a73910e29e582180cc9 rdf:first sg:person.016213456237.22
72 rdf:rest N1f447f960db84427a381920bd0e32903
73 N5ec4e4db376442a4805b1372f5b70f2c schema:issueNumber 3-4
74 rdf:type schema:PublicationIssue
75 N70e74ff364d746a48032f7920f932815 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N9050bfadccda4596a5ee6232b648b5b4 schema:volumeNumber 173
78 rdf:type schema:PublicationVolume
79 Na1a0960fde57477d8002ec592e14d044 schema:name readcube_id
80 schema:value 7a9e151f5426eadead276b1902d9e873824ddbe84fd312dd73de3b13bbed837d
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:journal.1053886 schema:issn 0178-8051
89 1432-2064
90 schema:name Probability Theory and Related Fields
91 rdf:type schema:Periodical
92 sg:person.010554052127.82 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
93 schema:familyName Miolane
94 schema:givenName Léo
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554052127.82
96 rdf:type schema:Person
97 sg:person.016213456237.22 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
98 schema:familyName Lelarge
99 schema:givenName Marc
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213456237.22
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4614-6289-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000983571
103 https://doi.org/10.1007/978-1-4614-6289-7
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-642-22253-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004111194
106 https://doi.org/10.1007/978-3-642-22253-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00220-002-0773-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040172373
109 https://doi.org/10.1007/s00220-002-0773-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00220-007-0209-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040289210
112 https://doi.org/10.1007/s00220-007-0209-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10107-016-1059-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920179
115 https://doi.org/10.1007/s10107-016-1059-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10955-009-9781-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841306
118 https://doi.org/10.1007/s10955-009-9781-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10955-015-1338-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034110432
121 https://doi.org/10.1007/s10955-015-1338-2
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/ett.1289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046664220
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.aim.2011.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020111192
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00018732.2016.1211393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041676048
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0305-4470/31/46/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046416720
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0305-4470/32/21/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048199778
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/acprof:oso/9780198509417.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098731037
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/acprof:oso/9780199535255.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728789
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/imaiai/iaw017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059683467
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.68.214403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035833199
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.84.066106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022276361
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/allerton.2015.7447070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093374541
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/isit.2012.6283056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094012116
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/isit.2014.6875223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093339510
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/isit.2015.7282642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093900309
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/isit.2015.7282733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093204823
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/isit.2016.7541405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093923793
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/isit.2016.7541628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093171472
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/isit.2017.8006706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094674171
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/itw.2016.7606798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093542327
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tit.2005.844072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650466
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tit.2009.2030457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652462
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tit.2010.2070131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652954
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tit.2011.2112231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653191
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tit.2011.2174959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653707
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tnse.2017.2758201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092035963
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1111/1468-0262.00296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024974292
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/3055399.3055420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091883863
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1214/009117905000000233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047241984
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1214/009117906000000575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389361
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
182 schema:name Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, 75005, Paris, France
183 Inria, Paris, France
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...