Ornstein-Zernike theory for finite range Ising models above Tc View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-03

AUTHORS

Massimo Campanino, Dmitry Ioffe, Y van Velenik

ABSTRACT

We derive a precise Ornstein-Zernike asymptotic formula for the decay of the two-point function 〈Σ0Σx〉β in the general context of finite range Ising type models on ℤd. The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman, Barsky and Fernández, goes through in the whole of the high temperature region β<βc. As a byproduct we obtain that for every β<βc, the inverse correlation length ξβ is an analytic and strictly convex function of direction. More... »

PAGES

305-349

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00440-002-0229-z

DOI

http://dx.doi.org/10.1007/s00440-002-0229-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000567086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Bologna, piazza di Porta S. Donato 5, I-40126 Bologna, Italy. e-mail: campanin@dm.unibo.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campanino", 
        "givenName": "Massimo", 
        "id": "sg:person.016047352140.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047352140.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Faculty of Industrial Engineering, Technion, Haifa 3200, Israel. e-mail: ieioffe@ie.technion.ac.il, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioffe", 
        "givenName": "Dmitry", 
        "id": "sg:person.011600526062.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600526062.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Laboratoire d'Analyse, Topologie et Probabilit\u00e9s, UMR-CNRS 6632, CMI, Universit\u00e9 de Provence, 39 rue Joliot Curie, 13453 Marseille, France. e-mail: velenik@cmi.univ-mrs.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Velenik", 
        "givenName": "Y van", 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03", 
    "datePublishedReg": "2003-03-01", 
    "description": "We derive a precise Ornstein-Zernike asymptotic formula for the decay of the two-point function \u3008\u03a30\u03a3x\u3009\u03b2 in the general context of finite range Ising type models on \u2124d. The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman, Barsky and Fern\u00e1ndez, goes through in the whole of the high temperature region \u03b2<\u03b2c. As a byproduct we obtain that for every \u03b2<\u03b2c, the inverse correlation length \u03be\u03b2 is an analytic and strictly convex function of direction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00440-002-0229-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "name": "Ornstein-Zernike theory for finite range Ising models above Tc", 
    "pagination": "305-349", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02b338da7c707ac74b3cfe2131c24716059851df8d60bed309b7f9e67d470ff0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00440-002-0229-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000567086"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00440-002-0229-z", 
      "https://app.dimensions.ai/details/publication/pub.1000567086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00440-002-0229-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00440-002-0229-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00440-002-0229-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00440-002-0229-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00440-002-0229-z'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00440-002-0229-z schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N0a84322e47db47e6886b69808e9896f7
4 schema:datePublished 2003-03
5 schema:datePublishedReg 2003-03-01
6 schema:description We derive a precise Ornstein-Zernike asymptotic formula for the decay of the two-point function 〈Σ0Σx〉β in the general context of finite range Ising type models on ℤd. The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman, Barsky and Fernández, goes through in the whole of the high temperature region β<βc. As a byproduct we obtain that for every β<βc, the inverse correlation length ξβ is an analytic and strictly convex function of direction.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N3f7d627a3d1c49eea79929da36573e97
11 Nbbc5774dd5684d5e9045d3368ee80906
12 sg:journal.1053886
13 schema:name Ornstein-Zernike theory for finite range Ising models above Tc
14 schema:pagination 305-349
15 schema:productId N2e27723f918642c2a6cdf5f308598ff1
16 N5b23688652d1471a8624d54c3c87f998
17 N734524269a894cfd881e51de5762118d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000567086
19 https://doi.org/10.1007/s00440-002-0229-z
20 schema:sdDatePublished 2019-04-11T09:33
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N81cc3001c7314641b613827679f08185
23 schema:url https://link.springer.com/10.1007%2Fs00440-002-0229-z
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0a84322e47db47e6886b69808e9896f7 rdf:first sg:person.016047352140.68
28 rdf:rest Ncbf993812cab4116824558fd02b41616
29 N2e27723f918642c2a6cdf5f308598ff1 schema:name doi
30 schema:value 10.1007/s00440-002-0229-z
31 rdf:type schema:PropertyValue
32 N3f7d627a3d1c49eea79929da36573e97 schema:volumeNumber 125
33 rdf:type schema:PublicationVolume
34 N5036297eb12b432bb0ccfc0304b0efc5 rdf:first N9af2e7a8d065409e8a8188e6813ebe0b
35 rdf:rest rdf:nil
36 N5b23688652d1471a8624d54c3c87f998 schema:name dimensions_id
37 schema:value pub.1000567086
38 rdf:type schema:PropertyValue
39 N734524269a894cfd881e51de5762118d schema:name readcube_id
40 schema:value 02b338da7c707ac74b3cfe2131c24716059851df8d60bed309b7f9e67d470ff0
41 rdf:type schema:PropertyValue
42 N81cc3001c7314641b613827679f08185 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N9af2e7a8d065409e8a8188e6813ebe0b schema:affiliation https://www.grid.ac/institutes/grid.5399.6
45 schema:familyName Velenik
46 schema:givenName Y van
47 rdf:type schema:Person
48 Nbbc5774dd5684d5e9045d3368ee80906 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 Ncbf993812cab4116824558fd02b41616 rdf:first sg:person.011600526062.55
51 rdf:rest N5036297eb12b432bb0ccfc0304b0efc5
52 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
53 schema:name Earth Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
56 schema:name Geology
57 rdf:type schema:DefinedTerm
58 sg:journal.1053886 schema:issn 0178-8051
59 1432-2064
60 schema:name Probability Theory and Related Fields
61 rdf:type schema:Periodical
62 sg:person.011600526062.55 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
63 schema:familyName Ioffe
64 schema:givenName Dmitry
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600526062.55
66 rdf:type schema:Person
67 sg:person.016047352140.68 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
68 schema:familyName Campanino
69 schema:givenName Massimo
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047352140.68
71 rdf:type schema:Person
72 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
73 schema:name Laboratoire d'Analyse, Topologie et Probabilités, UMR-CNRS 6632, CMI, Université de Provence, 39 rue Joliot Curie, 13453 Marseille, France. e-mail: velenik@cmi.univ-mrs.fr, FR
74 rdf:type schema:Organization
75 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
76 schema:name Dipartimento di Matematica, Università di Bologna, piazza di Porta S. Donato 5, I-40126 Bologna, Italy. e-mail: campanin@dm.unibo.it, IT
77 rdf:type schema:Organization
78 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
79 schema:name Faculty of Industrial Engineering, Technion, Haifa 3200, Israel. e-mail: ieioffe@ie.technion.ac.il, IL
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...