Using drug response data to identify molecular effectors, and molecular “omic” data to identify candidate drugs in cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-01

AUTHORS

William C. Reinhold, Sudhir Varma, Vinodh N. Rajapakse, Augustin Luna, Fabricio Garmus Sousa, Kurt W. Kohn, Yves G. Pommier

ABSTRACT

The current convergence of molecular and pharmacological data provides unprecedented opportunities to gain insights into the relationships between the two types of data. Multiple forms of large-scale molecular data, including but not limited to gene and microRNA transcript expression, DNA somatic and germline variations from next-generation DNA and RNA sequencing, and DNA copy number from array comparative genomic hybridization are all potentially informative when one attempts to recognize the panoply of potentially influential events both for cancer progression and therapeutic outcome. Concurrently, there has also been a substantial expansion of the pharmacological data being accrued in a systematic fashion. For cancer cell lines, the National Cancer Institute cell line panel (NCI-60), the Cancer Cell Line Encyclopedia (CCLE), and the collaborative Genomics of Drug Sensitivity in Cancer (GDSC) databases all provide subsets of these forms of data. For the patient-derived data, The Cancer Genome Atlas (TCGA) provides analogous forms of genomic information along with treatment histories. Integration of these data in turn relies on the fields of statistics and statistical learning. Multiple algorithmic approaches may be chosen, depending on the data being considered, and the nature of the question being asked. Combining these algorithms with prior biological knowledge, the results of molecular biological studies, and the consideration of genes as pathways or functional groups provides both the challenge and the potential of the field. The ultimate goal is to provide a paradigm shift in the way that drugs are selected to provide a more targeted and efficacious outcome for the patient. More... »

PAGES

3-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00439-014-1482-9

DOI

http://dx.doi.org/10.1007/s00439-014-1482-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040459313

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25213708


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacogenetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Precision Medicine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Building 37, room 5041, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reinhold", 
        "givenName": "William C.", 
        "id": "sg:person.0735417517.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735417517.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA", 
            "HiThru Analytics LLC, 20707, Laurel, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varma", 
        "givenName": "Sudhir", 
        "id": "sg:person.013700731017.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700731017.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajapakse", 
        "givenName": "Vinodh N.", 
        "id": "sg:person.01020056621.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020056621.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA", 
            "Computer Biology Program, Memorial Sloan Kettering Cancer Center, 10021, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luna", 
        "givenName": "Augustin", 
        "id": "sg:person.01165474005.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165474005.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Mato Grosso do Sul", 
          "id": "https://www.grid.ac/institutes/grid.412352.3", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA", 
            "CETROGEN, PPGFARM, UFMS, 79070-900, Campo Grande, MS, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sousa", 
        "givenName": "Fabricio Garmus", 
        "id": "sg:person.01010634403.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010634403.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohn", 
        "givenName": "Kurt W.", 
        "id": "sg:person.01307163725.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307163725.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Building 37, room 5068, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pommier", 
        "givenName": "Yves G.", 
        "id": "sg:person.01357705235.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357705235.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000430650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2013.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001002165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-3-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001393711", 
          "https://doi.org/10.1186/1479-5876-3-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2004.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002677235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-10-0674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002721886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003408810", 
          "https://doi.org/10.1186/1471-2164-10-277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005605205", 
          "https://doi.org/10.1038/nature12839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2013.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006817847", 
          "https://doi.org/10.1038/clpt.2013.214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007033767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007033767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0044631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007037132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312342", 
          "https://doi.org/10.1038/nature11005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/464678a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009066855", 
          "https://doi.org/10.1038/464678a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009170123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdu143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009170123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-3122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-3528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0101670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009929557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1200037109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010181151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-05-0155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011152104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pgs.13.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011468395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0031628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011814438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-11-206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014272142", 
          "https://doi.org/10.1186/1471-2407-11-206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stem.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014295941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stem.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014295941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-4-r28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017134389", 
          "https://doi.org/10.1186/gb-2003-4-4-r28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-09-0965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017927263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019062521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019062521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021085787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-2120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022864706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cddis.2014.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023241231", 
          "https://doi.org/10.1038/cddis.2014.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2007.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023848127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2331323100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/73432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024393583", 
          "https://doi.org/10.1038/73432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025191587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026557089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aoas291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028244805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1205943109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028400792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm.11.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029746807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2034995100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030492443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-10-0106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032591229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1107-1276b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032905735", 
          "https://doi.org/10.1038/nm1107-1276b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683846", 
          "https://doi.org/10.1038/nature12831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-12-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034748909", 
          "https://doi.org/10.1186/1471-2199-12-23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036060000", 
          "https://doi.org/10.1038/nature11003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-3342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036268163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707498104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036732228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-0290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038927240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040430178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-07-0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041578841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-08-0921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044866327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0046518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046456275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/483544a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049128323", 
          "https://doi.org/10.1038/483544a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049222218", 
          "https://doi.org/10.1038/nature11154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.22.9054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049572166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050089965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2012.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051493137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-s1-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051833905", 
          "https://doi.org/10.1186/1471-2105-7-s1-s7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-12-0028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052739264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053488336", 
          "https://doi.org/10.1038/nrc1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053488336", 
          "https://doi.org/10.1038/nrc1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-1370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053718501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1338126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/81.14.1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059815226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/82.13.1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059815882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5298.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062555516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2012-1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064293565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2010-0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064328491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182616fc4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182616fc4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182616fc4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182617170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182617170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182617170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064357102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076617317", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082550560", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082587366", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "The current convergence of molecular and pharmacological data provides unprecedented opportunities to gain insights into the relationships between the two types of data. Multiple forms of large-scale molecular data, including but not limited to gene and microRNA transcript expression, DNA somatic and germline variations from next-generation DNA and RNA sequencing, and DNA copy number from array comparative genomic hybridization are all potentially informative when one attempts to recognize the panoply of potentially influential events both for cancer progression and therapeutic outcome. Concurrently, there has also been a substantial expansion of the pharmacological data being accrued in a systematic fashion. For cancer cell lines, the National Cancer Institute cell line panel (NCI-60), the Cancer Cell Line Encyclopedia (CCLE), and the collaborative Genomics of Drug Sensitivity in Cancer (GDSC) databases all provide subsets of these forms of data. For the patient-derived data, The Cancer Genome Atlas (TCGA) provides analogous forms of genomic information along with treatment histories. Integration of these data in turn relies on the fields of statistics and statistical learning. Multiple algorithmic approaches may be chosen, depending on the data being considered, and the nature of the question being asked. Combining these algorithms with prior biological knowledge, the results of molecular biological studies, and the consideration of genes as pathways or functional groups provides both the challenge and the potential of the field. The ultimate goal is to provide a paradigm shift in the way that drugs are selected to provide a more targeted and efficacious outcome for the patient. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00439-014-1482-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2726546", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1085982", 
        "issn": [
          "0340-6717", 
          "1432-1203"
        ], 
        "name": "Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "name": "Using drug response data to identify molecular effectors, and molecular \u201comic\u201d data to identify candidate drugs in cancer", 
    "pagination": "3-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0bb1b88cbc2ae985c57fc888ccfada067a5cf9e830829342d389841714762ac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25213708"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7613873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00439-014-1482-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040459313"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00439-014-1482-9", 
      "https://app.dimensions.ai/details/publication/pub.1040459313"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00439-014-1482-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00439-014-1482-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00439-014-1482-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00439-014-1482-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00439-014-1482-9'


 

This table displays all metadata directly associated to this object as RDF triples.

384 TRIPLES      21 PREDICATES      108 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00439-014-1482-9 schema:about N084ee8e26be64d7c833cbe11c2a28bc0
2 N31a1c8b9938448af922560b533397d1b
3 N3c5119686ff44b149c7be13109420e36
4 N4a4c5893234b4b8dac183d35412f087d
5 N8809a4864e1b4a4a8c0e2cfbbf3e94f7
6 N9c615b8eb87344a392e98a0cf6443e9e
7 Nb2183d5e0e5646959c132afd01694b60
8 Nf71d0af3936641d0892feccd866c7e1b
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author Nfb4492fbecf74b418de118084381ddef
12 schema:citation sg:pub.10.1038/464678a
13 sg:pub.10.1038/483544a
14 sg:pub.10.1038/73432
15 sg:pub.10.1038/cddis.2014.111
16 sg:pub.10.1038/clpt.2013.214
17 sg:pub.10.1038/nature11003
18 sg:pub.10.1038/nature11005
19 sg:pub.10.1038/nature11154
20 sg:pub.10.1038/nature12831
21 sg:pub.10.1038/nature12839
22 sg:pub.10.1038/nm1107-1276b
23 sg:pub.10.1038/nrc1951
24 sg:pub.10.1186/1471-2105-7-s1-s7
25 sg:pub.10.1186/1471-2164-10-277
26 sg:pub.10.1186/1471-2199-12-23
27 sg:pub.10.1186/1471-2407-11-206
28 sg:pub.10.1186/1479-5876-3-11
29 sg:pub.10.1186/gb-2003-4-4-r28
30 https://app.dimensions.ai/details/publication/pub.1076617317
31 https://app.dimensions.ai/details/publication/pub.1082550560
32 https://app.dimensions.ai/details/publication/pub.1082587366
33 https://doi.org/10.1002/humu.22143
34 https://doi.org/10.1002/stem.324
35 https://doi.org/10.1016/j.ajhg.2012.05.021
36 https://doi.org/10.1016/j.ccr.2004.06.026
37 https://doi.org/10.1016/j.celrep.2013.07.018
38 https://doi.org/10.1016/j.tips.2007.10.015
39 https://doi.org/10.1038/msb.2011.35
40 https://doi.org/10.1038/msb4100088
41 https://doi.org/10.1063/1.1338126
42 https://doi.org/10.1073/pnas.0707498104
43 https://doi.org/10.1073/pnas.1200037109
44 https://doi.org/10.1073/pnas.1205943109
45 https://doi.org/10.1073/pnas.2034995100
46 https://doi.org/10.1073/pnas.2331323100
47 https://doi.org/10.1093/annonc/mdu143
48 https://doi.org/10.1093/bioinformatics/btn081
49 https://doi.org/10.1093/bioinformatics/btu164
50 https://doi.org/10.1093/jnci/81.14.1088
51 https://doi.org/10.1093/jnci/82.13.1113
52 https://doi.org/10.1093/nar/gkq1018
53 https://doi.org/10.1093/nar/gkq1039
54 https://doi.org/10.1111/j.1467-9868.2005.00503.x
55 https://doi.org/10.1126/science.1218595
56 https://doi.org/10.1126/science.275.5298.343
57 https://doi.org/10.1136/amiajnl-2012-001442
58 https://doi.org/10.1158/0008-5472.can-07-2120
59 https://doi.org/10.1158/0008-5472.can-09-3528
60 https://doi.org/10.1158/0008-5472.can-12-1370
61 https://doi.org/10.1158/0008-5472.can-12-3122
62 https://doi.org/10.1158/0008-5472.can-12-3342
63 https://doi.org/10.1158/1078-0432.ccr-06-0290
64 https://doi.org/10.1158/1535-7163.mct-05-0155
65 https://doi.org/10.1158/1535-7163.mct-07-0009
66 https://doi.org/10.1158/1535-7163.mct-08-0921
67 https://doi.org/10.1158/1535-7163.mct-09-0965
68 https://doi.org/10.1158/1535-7163.mct-10-0106
69 https://doi.org/10.1158/1535-7163.mct-10-0674
70 https://doi.org/10.1158/2159-8290.cd-12-0028
71 https://doi.org/10.1200/jco.2009.22.9054
72 https://doi.org/10.1210/jc.2012-1743
73 https://doi.org/10.1210/me.2010-0040
74 https://doi.org/10.1212/wnl.0b013e3182616fc4
75 https://doi.org/10.1212/wnl.0b013e3182617170
76 https://doi.org/10.1214/09-aoas291
77 https://doi.org/10.1371/journal.pone.0031628
78 https://doi.org/10.1371/journal.pone.0044631
79 https://doi.org/10.1371/journal.pone.0046518
80 https://doi.org/10.1371/journal.pone.0101670
81 https://doi.org/10.2217/bmm.11.37
82 https://doi.org/10.2217/pgs.13.90
83 schema:datePublished 2015-01
84 schema:datePublishedReg 2015-01-01
85 schema:description The current convergence of molecular and pharmacological data provides unprecedented opportunities to gain insights into the relationships between the two types of data. Multiple forms of large-scale molecular data, including but not limited to gene and microRNA transcript expression, DNA somatic and germline variations from next-generation DNA and RNA sequencing, and DNA copy number from array comparative genomic hybridization are all potentially informative when one attempts to recognize the panoply of potentially influential events both for cancer progression and therapeutic outcome. Concurrently, there has also been a substantial expansion of the pharmacological data being accrued in a systematic fashion. For cancer cell lines, the National Cancer Institute cell line panel (NCI-60), the Cancer Cell Line Encyclopedia (CCLE), and the collaborative Genomics of Drug Sensitivity in Cancer (GDSC) databases all provide subsets of these forms of data. For the patient-derived data, The Cancer Genome Atlas (TCGA) provides analogous forms of genomic information along with treatment histories. Integration of these data in turn relies on the fields of statistics and statistical learning. Multiple algorithmic approaches may be chosen, depending on the data being considered, and the nature of the question being asked. Combining these algorithms with prior biological knowledge, the results of molecular biological studies, and the consideration of genes as pathways or functional groups provides both the challenge and the potential of the field. The ultimate goal is to provide a paradigm shift in the way that drugs are selected to provide a more targeted and efficacious outcome for the patient.
86 schema:genre research_article
87 schema:inLanguage en
88 schema:isAccessibleForFree true
89 schema:isPartOf Nb2982fc51bd7458c9a9dba32fdf1c71d
90 Nd0053747d71e40808aeef651c9d05608
91 sg:journal.1085982
92 schema:name Using drug response data to identify molecular effectors, and molecular “omic” data to identify candidate drugs in cancer
93 schema:pagination 3-11
94 schema:productId N5ed50cf46053414a8e426c976685520b
95 N62dab0d7b6b34c1ab282f5ac9bd026bc
96 N74107010b2c04c2eb51a55d45e4689f0
97 Nd3e1ae0ee16840f9acda71c8931d278e
98 Ne976e06bd7a5481d8af3abc6fb0a1cf6
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040459313
100 https://doi.org/10.1007/s00439-014-1482-9
101 schema:sdDatePublished 2019-04-11T10:03
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nff7c27cbfe8f403f890774ac9fba7bc8
104 schema:url https://link.springer.com/10.1007%2Fs00439-014-1482-9
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N084ee8e26be64d7c833cbe11c2a28bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Biomarkers, Tumor
110 rdf:type schema:DefinedTerm
111 N31a1c8b9938448af922560b533397d1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pharmacogenetics
113 rdf:type schema:DefinedTerm
114 N3c5119686ff44b149c7be13109420e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 N4589e73085d74ad2a41ea746714b9d85 rdf:first sg:person.01165474005.01
118 rdf:rest Naab68c9abd8e4b6ca078ade6c6be52ca
119 N4a4c5893234b4b8dac183d35412f087d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Gene Expression Profiling
121 rdf:type schema:DefinedTerm
122 N5ed50cf46053414a8e426c976685520b schema:name readcube_id
123 schema:value c0bb1b88cbc2ae985c57fc888ccfada067a5cf9e830829342d389841714762ac
124 rdf:type schema:PropertyValue
125 N62dab0d7b6b34c1ab282f5ac9bd026bc schema:name pubmed_id
126 schema:value 25213708
127 rdf:type schema:PropertyValue
128 N64e7c932ec74420d872673021fc848c9 rdf:first sg:person.01357705235.00
129 rdf:rest rdf:nil
130 N72cadad40bc3457caf083cdb78e93b1e rdf:first sg:person.013700731017.89
131 rdf:rest Nb9d21b63da9b4db394bc4e69b2b4b925
132 N74107010b2c04c2eb51a55d45e4689f0 schema:name dimensions_id
133 schema:value pub.1040459313
134 rdf:type schema:PropertyValue
135 N745ba24cb9094e48ba919d0db14fe2eb rdf:first sg:person.01307163725.43
136 rdf:rest N64e7c932ec74420d872673021fc848c9
137 N8809a4864e1b4a4a8c0e2cfbbf3e94f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Antineoplastic Agents
139 rdf:type schema:DefinedTerm
140 N9c615b8eb87344a392e98a0cf6443e9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neoplasms
142 rdf:type schema:DefinedTerm
143 Naab68c9abd8e4b6ca078ade6c6be52ca rdf:first sg:person.01010634403.34
144 rdf:rest N745ba24cb9094e48ba919d0db14fe2eb
145 Nb2183d5e0e5646959c132afd01694b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Humans
147 rdf:type schema:DefinedTerm
148 Nb2982fc51bd7458c9a9dba32fdf1c71d schema:volumeNumber 134
149 rdf:type schema:PublicationVolume
150 Nb9d21b63da9b4db394bc4e69b2b4b925 rdf:first sg:person.01020056621.87
151 rdf:rest N4589e73085d74ad2a41ea746714b9d85
152 Nd0053747d71e40808aeef651c9d05608 schema:issueNumber 1
153 rdf:type schema:PublicationIssue
154 Nd3e1ae0ee16840f9acda71c8931d278e schema:name doi
155 schema:value 10.1007/s00439-014-1482-9
156 rdf:type schema:PropertyValue
157 Ne976e06bd7a5481d8af3abc6fb0a1cf6 schema:name nlm_unique_id
158 schema:value 7613873
159 rdf:type schema:PropertyValue
160 Nf71d0af3936641d0892feccd866c7e1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Precision Medicine
162 rdf:type schema:DefinedTerm
163 Nfb4492fbecf74b418de118084381ddef rdf:first sg:person.0735417517.85
164 rdf:rest N72cadad40bc3457caf083cdb78e93b1e
165 Nff7c27cbfe8f403f890774ac9fba7bc8 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
171 schema:name Genetics
172 rdf:type schema:DefinedTerm
173 sg:grant.2726546 http://pending.schema.org/fundedItem sg:pub.10.1007/s00439-014-1482-9
174 rdf:type schema:MonetaryGrant
175 sg:journal.1085982 schema:issn 0340-6717
176 1432-1203
177 schema:name Human Genetics
178 rdf:type schema:Periodical
179 sg:person.01010634403.34 schema:affiliation https://www.grid.ac/institutes/grid.412352.3
180 schema:familyName Sousa
181 schema:givenName Fabricio Garmus
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010634403.34
183 rdf:type schema:Person
184 sg:person.01020056621.87 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
185 schema:familyName Rajapakse
186 schema:givenName Vinodh N.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020056621.87
188 rdf:type schema:Person
189 sg:person.01165474005.01 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
190 schema:familyName Luna
191 schema:givenName Augustin
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165474005.01
193 rdf:type schema:Person
194 sg:person.01307163725.43 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
195 schema:familyName Kohn
196 schema:givenName Kurt W.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307163725.43
198 rdf:type schema:Person
199 sg:person.01357705235.00 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
200 schema:familyName Pommier
201 schema:givenName Yves G.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357705235.00
203 rdf:type schema:Person
204 sg:person.013700731017.89 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
205 schema:familyName Varma
206 schema:givenName Sudhir
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700731017.89
208 rdf:type schema:Person
209 sg:person.0735417517.85 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
210 schema:familyName Reinhold
211 schema:givenName William C.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735417517.85
213 rdf:type schema:Person
214 sg:pub.10.1038/464678a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009066855
215 https://doi.org/10.1038/464678a
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/483544a schema:sameAs https://app.dimensions.ai/details/publication/pub.1049128323
218 https://doi.org/10.1038/483544a
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/73432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024393583
221 https://doi.org/10.1038/73432
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/cddis.2014.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023241231
224 https://doi.org/10.1038/cddis.2014.111
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/clpt.2013.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006817847
227 https://doi.org/10.1038/clpt.2013.214
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
230 https://doi.org/10.1038/nature11003
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nature11005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312342
233 https://doi.org/10.1038/nature11005
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature11154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049222218
236 https://doi.org/10.1038/nature11154
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature12831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683846
239 https://doi.org/10.1038/nature12831
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature12839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005605205
242 https://doi.org/10.1038/nature12839
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nm1107-1276b schema:sameAs https://app.dimensions.ai/details/publication/pub.1032905735
245 https://doi.org/10.1038/nm1107-1276b
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nrc1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053488336
248 https://doi.org/10.1038/nrc1951
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2105-7-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833905
251 https://doi.org/10.1186/1471-2105-7-s1-s7
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2164-10-277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003408810
254 https://doi.org/10.1186/1471-2164-10-277
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1471-2199-12-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034748909
257 https://doi.org/10.1186/1471-2199-12-23
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1471-2407-11-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014272142
260 https://doi.org/10.1186/1471-2407-11-206
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1479-5876-3-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001393711
263 https://doi.org/10.1186/1479-5876-3-11
264 rdf:type schema:CreativeWork
265 sg:pub.10.1186/gb-2003-4-4-r28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017134389
266 https://doi.org/10.1186/gb-2003-4-4-r28
267 rdf:type schema:CreativeWork
268 https://app.dimensions.ai/details/publication/pub.1076617317 schema:CreativeWork
269 https://app.dimensions.ai/details/publication/pub.1082550560 schema:CreativeWork
270 https://app.dimensions.ai/details/publication/pub.1082587366 schema:CreativeWork
271 https://doi.org/10.1002/humu.22143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021085787
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1002/stem.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014295941
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.ajhg.2012.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051493137
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.ccr.2004.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002677235
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.celrep.2013.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001002165
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/j.tips.2007.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023848127
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1038/msb.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007033767
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1038/msb4100088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019062521
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1063/1.1338126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696444
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1073/pnas.0707498104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036732228
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1073/pnas.1200037109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010181151
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1073/pnas.1205943109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028400792
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1073/pnas.2034995100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030492443
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1073/pnas.2331323100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111583
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/annonc/mdu143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009170123
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/bioinformatics/btn081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000430650
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1093/bioinformatics/btu164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022864706
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1093/jnci/81.14.1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059815226
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1093/jnci/82.13.1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059815882
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1093/nar/gkq1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040430178
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1093/nar/gkq1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026557089
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1126/science.1218595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025191587
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1126/science.275.5298.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555516
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1136/amiajnl-2012-001442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050089965
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1158/0008-5472.can-07-2120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574159
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1158/0008-5472.can-09-3528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349700
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1158/0008-5472.can-12-1370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053718501
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1158/0008-5472.can-12-3122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009339015
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1158/0008-5472.can-12-3342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036268163
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1158/1078-0432.ccr-06-0290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038927240
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1158/1535-7163.mct-05-0155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011152104
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1158/1535-7163.mct-07-0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041578841
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1158/1535-7163.mct-08-0921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044866327
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1158/1535-7163.mct-09-0965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017927263
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1158/1535-7163.mct-10-0106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032591229
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1158/1535-7163.mct-10-0674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721886
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1158/2159-8290.cd-12-0028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052739264
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1200/jco.2009.22.9054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049572166
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1210/jc.2012-1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064293565
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1210/me.2010-0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064328491
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1212/wnl.0b013e3182616fc4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064357092
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1212/wnl.0b013e3182617170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064357102
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1214/09-aoas291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028244805
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1371/journal.pone.0031628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011814438
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1371/journal.pone.0044631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007037132
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1371/journal.pone.0046518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046456275
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1371/journal.pone.0101670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009929557
366 rdf:type schema:CreativeWork
367 https://doi.org/10.2217/bmm.11.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029746807
368 rdf:type schema:CreativeWork
369 https://doi.org/10.2217/pgs.13.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011468395
370 rdf:type schema:CreativeWork
371 https://www.grid.ac/institutes/grid.412352.3 schema:alternateName Federal University of Mato Grosso do Sul
372 schema:name CETROGEN, PPGFARM, UFMS, 79070-900, Campo Grande, MS, Brazil
373 Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA
374 rdf:type schema:Organization
375 https://www.grid.ac/institutes/grid.420086.8 schema:alternateName National Institute of Arthritis and Musculoskeletal and Skin Diseases
376 schema:name Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA
377 Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Building 37, room 5041, 20892, Bethesda, MD, USA
378 Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Building 37, room 5068, 20892, Bethesda, MD, USA
379 HiThru Analytics LLC, 20707, Laurel, MD, USA
380 rdf:type schema:Organization
381 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
382 schema:name Computer Biology Program, Memorial Sloan Kettering Cancer Center, 10021, New York, NY, USA
383 Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 20892, Bethesda, MD, USA
384 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...