SNPs for a universal individual identification panel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03

AUTHORS

Andrew J. Pakstis, William C. Speed, Rixun Fang, Fiona C. L. Hyland, Manohar R. Furtado, Judith R. Kidd, Kenneth K. Kidd

ABSTRACT

An efficient method to uniquely identify every individual would have value in quality control and sample tracking of large collections of cell lines or DNA as is now often the case with whole genome association studies. Such a method would also be useful in forensics. SNPs represent the best markers for such purposes. We have developed a globally applicable resource of 92 SNPs for individual identification (IISNPs) with extremely low probabilities of any two unrelated individuals from anywhere in the world having identical genotypes. The SNPs were identified by screening over 500 likely/candidate SNPs on samples of 44 populations representing the major regions of the world. All 92 IISNPs have an average heterozygosity [0.4 and the F(st) values are all\0.06 on our 44 populations making these a universally applicable panel irrespective of ethnicity or ancestry. No significant linkage disequilibrium (LD) occurs for all unique pairings of 86 of the 92 IISNPs (median LD = 0.011) in all of the 44 populations. The remaining 6 IISNPs show strong LD in most of the 44 populations for a small subset (7) of the unique pairings in which they occur due to close linkage. 45 of the 86 SNPs are spread across the 22 human autosomes and show very loose or no genetic linkage with each other. These 45 IISNPs constitute an excellent panel for individual identification including paternity testing with associated probabilities of individual genotypes less than 10(-15), smaller than achieved with the current panels of forensic markers. This panel also improves on an interim panel of 40 IISNPs previously identified using 40 population samples. The unlinked status of the subset of 45 SNPs we have identified also makes them useful for situations involving close biological relationships. Comparisons with random sets of SNPs illustrate the greater discriminating power, efficiency, and more universal applicability of this IISNP panel to populations around the world. The full set of 86 IISNPs that do not show LD can be used to provide even smaller genotype match probabilities in the range of 10(-31)-10(-35) based on the 44 population samples studied. More... »

PAGES

315-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00439-009-0771-1

DOI

http://dx.doi.org/10.1007/s00439-009-0771-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027046407

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19937056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forensic Anthropology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Individuality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paternity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Identification Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pakstis", 
        "givenName": "Andrew J.", 
        "id": "sg:person.01147776341.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speed", 
        "givenName": "William C.", 
        "id": "sg:person.01306046677.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Rixun", 
        "id": "sg:person.0653240566.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653240566.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hyland", 
        "givenName": "Fiona C. L.", 
        "id": "sg:person.010533611433.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010533611433.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furtado", 
        "givenName": "Manohar R.", 
        "id": "sg:person.011141750517.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141750517.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Judith R.", 
        "id": "sg:person.01216111541.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Kenneth K.", 
        "id": "sg:person.01264224741.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.04.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000174112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.7156307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002503866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2005.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972274", 
          "https://doi.org/10.1038/ng1911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972274", 
          "https://doi.org/10.1038/ng1911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8628(19970725)74:4<374::aid-ajmg7>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021765331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026085812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034395277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2008.00457.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036918892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1995.9003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigss.2007.10.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042502464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200500671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045314298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200500671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045314298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-007-0342-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026004", 
          "https://doi.org/10.1007/s00439-007-0342-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-007-0342-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026004", 
          "https://doi.org/10.1007/s00439-007-0342-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-007-0342-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026004", 
          "https://doi.org/10.1007/s00439-007-0342-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigss.2007.10.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051566588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigss.2009.08.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052257362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1153717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-7364-2-2-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077077749", 
          "https://doi.org/10.1186/1479-7364-2-2-81"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "An efficient method to uniquely identify every individual would have value in quality control and sample tracking of large collections of cell lines or DNA as is now often the case with whole genome association studies. Such a method would also be useful in forensics. SNPs represent the best markers for such purposes. We have developed a globally applicable resource of 92 SNPs for individual identification (IISNPs) with extremely low probabilities of any two unrelated individuals from anywhere in the world having identical genotypes. The SNPs were identified by screening over 500 likely/candidate SNPs on samples of 44 populations representing the major regions of the world. All 92 IISNPs have an average heterozygosity [0.4 and the F(st) values are all\\0.06 on our 44 populations making these a universally applicable panel irrespective of ethnicity or ancestry. No significant linkage disequilibrium (LD) occurs for all unique pairings of 86 of the 92 IISNPs (median LD = 0.011) in all of the 44 populations. The remaining 6 IISNPs show strong LD in most of the 44 populations for a small subset (7) of the unique pairings in which they occur due to close linkage. 45 of the 86 SNPs are spread across the 22 human autosomes and show very loose or no genetic linkage with each other. These 45 IISNPs constitute an excellent panel for individual identification including paternity testing with associated probabilities of individual genotypes less than 10(-15), smaller than achieved with the current panels of forensic markers. This panel also improves on an interim panel of 40 IISNPs previously identified using 40 population samples. The unlinked status of the subset of 45 SNPs we have identified also makes them useful for situations involving close biological relationships. Comparisons with random sets of SNPs illustrate the greater discriminating power, efficiency, and more universal applicability of this IISNP panel to populations around the world. The full set of 86 IISNPs that do not show LD can be used to provide even smaller genotype match probabilities in the range of 10(-31)-10(-35) based on the 44 population samples studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00439-009-0771-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7600014", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7601505", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1085982", 
        "issn": [
          "0340-6717", 
          "1432-1203"
        ], 
        "name": "Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "SNPs for a universal individual identification panel", 
    "pagination": "315-324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80d7cc72be218b92f31c08ad7f2d8bb987c76bf45c84153b55364767f1616587"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19937056"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7613873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00439-009-0771-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027046407"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00439-009-0771-1", 
      "https://app.dimensions.ai/details/publication/pub.1027046407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00439-009-0771-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00439-009-0771-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00439-009-0771-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00439-009-0771-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00439-009-0771-1'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      58 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00439-009-0771-1 schema:about N0fe0d9849eb74213a197f8bbe0f5a1eb
2 N2f97a546389747adbaafe0b6bee4a0a9
3 N49be614f7da247ff98574b03bd9f0f33
4 N4e919e4faa9e4219a56bd3b5bc429a19
5 N5646e6ff3a0945bc8e212239e0cf6aa7
6 N585020340126419e8e55760ba48bc8f9
7 N63a0845e0ddd441da45368aba8d4c28d
8 Nb12105f5639a4807944a9d59bf20d21d
9 Nb788112550054da088abf45ce0eeb5ee
10 Nc2ee9fc7249f4933b3a456a2bd65f0b5
11 Ne3311ea71c8247ba9b96cea70a7a58e9
12 Nee40736014b2445f87a709d62428aab8
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N19355f336ac24e0f87f3df085c1a94f9
16 schema:citation sg:pub.10.1007/s00439-007-0342-2
17 sg:pub.10.1038/ng1911
18 sg:pub.10.1186/1479-7364-2-2-81
19 https://app.dimensions.ai/details/publication/pub.1074647594
20 https://doi.org/10.1002/(sici)1096-8628(19970725)74:4<374::aid-ajmg7>3.0.co;2-p
21 https://doi.org/10.1002/elps.200500671
22 https://doi.org/10.1006/geno.1995.9003
23 https://doi.org/10.1016/j.forsciint.2004.03.005
24 https://doi.org/10.1016/j.forsciint.2004.04.073
25 https://doi.org/10.1016/j.forsciint.2005.11.017
26 https://doi.org/10.1016/j.fsigss.2007.10.159
27 https://doi.org/10.1016/j.fsigss.2007.10.200
28 https://doi.org/10.1016/j.fsigss.2009.08.161
29 https://doi.org/10.1101/gr.7156307
30 https://doi.org/10.1111/j.1469-1809.2008.00457.x
31 https://doi.org/10.1126/science.1153717
32 https://doi.org/10.1371/journal.pone.0006583
33 schema:datePublished 2010-03
34 schema:datePublishedReg 2010-03-01
35 schema:description An efficient method to uniquely identify every individual would have value in quality control and sample tracking of large collections of cell lines or DNA as is now often the case with whole genome association studies. Such a method would also be useful in forensics. SNPs represent the best markers for such purposes. We have developed a globally applicable resource of 92 SNPs for individual identification (IISNPs) with extremely low probabilities of any two unrelated individuals from anywhere in the world having identical genotypes. The SNPs were identified by screening over 500 likely/candidate SNPs on samples of 44 populations representing the major regions of the world. All 92 IISNPs have an average heterozygosity [0.4 and the F(st) values are all\0.06 on our 44 populations making these a universally applicable panel irrespective of ethnicity or ancestry. No significant linkage disequilibrium (LD) occurs for all unique pairings of 86 of the 92 IISNPs (median LD = 0.011) in all of the 44 populations. The remaining 6 IISNPs show strong LD in most of the 44 populations for a small subset (7) of the unique pairings in which they occur due to close linkage. 45 of the 86 SNPs are spread across the 22 human autosomes and show very loose or no genetic linkage with each other. These 45 IISNPs constitute an excellent panel for individual identification including paternity testing with associated probabilities of individual genotypes less than 10(-15), smaller than achieved with the current panels of forensic markers. This panel also improves on an interim panel of 40 IISNPs previously identified using 40 population samples. The unlinked status of the subset of 45 SNPs we have identified also makes them useful for situations involving close biological relationships. Comparisons with random sets of SNPs illustrate the greater discriminating power, efficiency, and more universal applicability of this IISNP panel to populations around the world. The full set of 86 IISNPs that do not show LD can be used to provide even smaller genotype match probabilities in the range of 10(-31)-10(-35) based on the 44 population samples studied.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N839b1fdf88fb436cbf198005d3bb6ebe
40 N894d0889e0174229abc7724b35bc0dd3
41 sg:journal.1085982
42 schema:name SNPs for a universal individual identification panel
43 schema:pagination 315-324
44 schema:productId N0f630c78f4ea4240a2439900524b886e
45 N82637e37139e4acda562c286dbbed9a8
46 N8cac64a2bed44d7e8fc7d2aec1566b52
47 Nc3146d8e269f4e14adfaf6b0570fd52e
48 Neaa15fa70b414c289df255d200133429
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027046407
50 https://doi.org/10.1007/s00439-009-0771-1
51 schema:sdDatePublished 2019-04-11T14:26
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N0ff2d01cbfbf4419970cec2c8ba5c48e
54 schema:url https://link.springer.com/10.1007%2Fs00439-009-0771-1
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0f630c78f4ea4240a2439900524b886e schema:name dimensions_id
59 schema:value pub.1027046407
60 rdf:type schema:PropertyValue
61 N0fe0d9849eb74213a197f8bbe0f5a1eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Humans
63 rdf:type schema:DefinedTerm
64 N0ff2d01cbfbf4419970cec2c8ba5c48e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N19355f336ac24e0f87f3df085c1a94f9 rdf:first sg:person.01147776341.54
67 rdf:rest N8c7b300211ad436f84260270a1407375
68 N2cfab0e156ed4946a32a7964838d27da rdf:first sg:person.01216111541.41
69 rdf:rest Nc8b86965238b4e758e63b71997ede494
70 N2f97a546389747adbaafe0b6bee4a0a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Genetics, Population
72 rdf:type schema:DefinedTerm
73 N49be614f7da247ff98574b03bd9f0f33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Frequency
75 rdf:type schema:DefinedTerm
76 N4e919e4faa9e4219a56bd3b5bc429a19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Patient Identification Systems
78 rdf:type schema:DefinedTerm
79 N5646e6ff3a0945bc8e212239e0cf6aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Individuality
81 rdf:type schema:DefinedTerm
82 N585020340126419e8e55760ba48bc8f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Genetic Testing
84 rdf:type schema:DefinedTerm
85 N63a0845e0ddd441da45368aba8d4c28d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Polymorphism, Single Nucleotide
87 rdf:type schema:DefinedTerm
88 N82637e37139e4acda562c286dbbed9a8 schema:name pubmed_id
89 schema:value 19937056
90 rdf:type schema:PropertyValue
91 N839b1fdf88fb436cbf198005d3bb6ebe schema:volumeNumber 127
92 rdf:type schema:PublicationVolume
93 N894d0889e0174229abc7724b35bc0dd3 schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 N8c7b300211ad436f84260270a1407375 rdf:first sg:person.01306046677.16
96 rdf:rest N9a7e7c7afde441379009237b791db79d
97 N8cac64a2bed44d7e8fc7d2aec1566b52 schema:name doi
98 schema:value 10.1007/s00439-009-0771-1
99 rdf:type schema:PropertyValue
100 N9a7e7c7afde441379009237b791db79d rdf:first sg:person.0653240566.29
101 rdf:rest Nf094e1269fd342d0aa45443164b01512
102 Nb12105f5639a4807944a9d59bf20d21d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Paternity
104 rdf:type schema:DefinedTerm
105 Nb788112550054da088abf45ce0eeb5ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Forensic Anthropology
107 rdf:type schema:DefinedTerm
108 Nc2a24c1acd2747b6b55381b50a3d4243 schema:name Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA
109 rdf:type schema:Organization
110 Nc2ee9fc7249f4933b3a456a2bd65f0b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Genotype
112 rdf:type schema:DefinedTerm
113 Nc3146d8e269f4e14adfaf6b0570fd52e schema:name readcube_id
114 schema:value 80d7cc72be218b92f31c08ad7f2d8bb987c76bf45c84153b55364767f1616587
115 rdf:type schema:PropertyValue
116 Nc8b86965238b4e758e63b71997ede494 rdf:first sg:person.01264224741.31
117 rdf:rest rdf:nil
118 Ncab58cce84e24f69911b3209a97e1fac schema:name Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA
119 rdf:type schema:Organization
120 Nd05912b72d3c49249b9d3bed5bc0439c schema:name Applied Markets, Applied Biosystems/Life Technologies, 94404, Foster City, CA, USA
121 rdf:type schema:Organization
122 Ne1b1fe18bcc64fc1bb7f0e4e6ebfa0e7 rdf:first sg:person.011141750517.35
123 rdf:rest N2cfab0e156ed4946a32a7964838d27da
124 Ne3311ea71c8247ba9b96cea70a7a58e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Linkage Disequilibrium
126 rdf:type schema:DefinedTerm
127 Neaa15fa70b414c289df255d200133429 schema:name nlm_unique_id
128 schema:value 7613873
129 rdf:type schema:PropertyValue
130 Nee40736014b2445f87a709d62428aab8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Chromosome Mapping
132 rdf:type schema:DefinedTerm
133 Nf094e1269fd342d0aa45443164b01512 rdf:first sg:person.010533611433.99
134 rdf:rest Ne1b1fe18bcc64fc1bb7f0e4e6ebfa0e7
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
139 schema:name Genetics
140 rdf:type schema:DefinedTerm
141 sg:grant.7600014 http://pending.schema.org/fundedItem sg:pub.10.1007/s00439-009-0771-1
142 rdf:type schema:MonetaryGrant
143 sg:grant.7601505 http://pending.schema.org/fundedItem sg:pub.10.1007/s00439-009-0771-1
144 rdf:type schema:MonetaryGrant
145 sg:journal.1085982 schema:issn 0340-6717
146 1432-1203
147 schema:name Human Genetics
148 rdf:type schema:Periodical
149 sg:person.010533611433.99 schema:affiliation Nc2a24c1acd2747b6b55381b50a3d4243
150 schema:familyName Hyland
151 schema:givenName Fiona C. L.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010533611433.99
153 rdf:type schema:Person
154 sg:person.011141750517.35 schema:affiliation Ncab58cce84e24f69911b3209a97e1fac
155 schema:familyName Furtado
156 schema:givenName Manohar R.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141750517.35
158 rdf:type schema:Person
159 sg:person.01147776341.54 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
160 schema:familyName Pakstis
161 schema:givenName Andrew J.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54
163 rdf:type schema:Person
164 sg:person.01216111541.41 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
165 schema:familyName Kidd
166 schema:givenName Judith R.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41
168 rdf:type schema:Person
169 sg:person.01264224741.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
170 schema:familyName Kidd
171 schema:givenName Kenneth K.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31
173 rdf:type schema:Person
174 sg:person.01306046677.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
175 schema:familyName Speed
176 schema:givenName William C.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16
178 rdf:type schema:Person
179 sg:person.0653240566.29 schema:affiliation Nd05912b72d3c49249b9d3bed5bc0439c
180 schema:familyName Fang
181 schema:givenName Rixun
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653240566.29
183 rdf:type schema:Person
184 sg:pub.10.1007/s00439-007-0342-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026004
185 https://doi.org/10.1007/s00439-007-0342-2
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/ng1911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014972274
188 https://doi.org/10.1038/ng1911
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1479-7364-2-2-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077077749
191 https://doi.org/10.1186/1479-7364-2-2-81
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
194 https://doi.org/10.1002/(sici)1096-8628(19970725)74:4<374::aid-ajmg7>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765331
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/elps.200500671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314298
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1006/geno.1995.9003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103610
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.forsciint.2004.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034395277
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.forsciint.2004.04.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000174112
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.forsciint.2005.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627333
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.fsigss.2007.10.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042502464
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.fsigss.2007.10.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051566588
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.fsigss.2009.08.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052257362
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1101/gr.7156307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503866
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1469-1809.2008.00457.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036918892
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1153717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457378
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0006583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026085812
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
221 schema:name Department of Genetics, Yale University School of Medicine, 333 Cedar Street, 208005, 06520, New Haven, CT, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...