Candidate SNPs for a universal individual identification panel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05

AUTHORS

Andrew J. Pakstis, William C. Speed, Judith R. Kidd, Kenneth K. Kidd

ABSTRACT

Single nucleotide polymorphisms (SNPs) are likely in the near future to have a fundamental role both in human identification and description. However, because allele frequencies can vary greatly among populations, a critical issue is the population genetics underlying calculation of the probabilities of unrelated individuals having identical multi-locus genotypes. Here we report on progress in identifying SNPs that show little allele frequency variation among a worldwide sample of 40 populations, i.e., have a low F(st), while remaining highly informative. Such markers have match probabilities that are nearly uniform irrespective of population and become candidates for a universally applicable individual identification panel applicable in forensics and paternity testing. They are also immediately useful for efficient sample identification/tagging in large biomedical, association, and epidemiologic studies. Using our previously described strategy for both identifying and characterizing such SNPs (Kidd et al. in Forensic Sci Int 164:20-32, 2006), we have now screened a total of 432 SNPs likely a priori to have high heterozygosity and low allele frequency variation and from these have selected the markers with the lowest F(st) in our set of 40 populations to produce a panel of 40 low F(st), high heterozygosity SNPs. Collectively these SNPs give average match probabilities of less than 10(-16) in most of the 40 populations and less than 10(-14) in all but one small isolated population; the range is 2.02 x 10(-17) to 1.29 x 10(-13). These 40 SNPs constitute excellent candidates for the global forensic community to consider for a universally applicable SNP panel for human identification. The relative ease with which these markers could be identified also provides a cautionary lesson for investigations of possible balancing selection. More... »

PAGES

305-317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00439-007-0342-2

DOI

http://dx.doi.org/10.1007/s00439-007-0342-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046026004

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17333283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forensic Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paternity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pakstis", 
        "givenName": "Andrew J.", 
        "id": "sg:person.01147776341.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speed", 
        "givenName": "William C.", 
        "id": "sg:person.01306046677.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Judith R.", 
        "id": "sg:person.01216111541.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Kenneth K.", 
        "id": "sg:person.01264224741.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.04.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000174112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2005.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000356439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2005.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1078311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005962126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-0277.2002.tb02481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011638166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-0277.2002.tb02481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011638166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011959945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735175", 
          "https://doi.org/10.1038/ng1438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735175", 
          "https://doi.org/10.1038/ng1438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-5809(03)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020781702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-5809(03)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020781702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/8.10.1913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021239938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2004.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021667031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2006.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022008203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034395277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2005.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034596237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1995.9003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038103610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039656724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-1809.2002.00108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039943839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8644(199902)108:2<137::aid-ajpa1>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045172832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200500671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045314298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200500671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045314298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jhered/esh060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050974654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1355-0306(04)71685-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2004.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053579903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs2004245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067619104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-7364-2-2-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077077749", 
          "https://doi.org/10.1186/1479-7364-2-2-81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078861211", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082805247", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "Single nucleotide polymorphisms (SNPs) are likely in the near future to have a fundamental role both in human identification and description. However, because allele frequencies can vary greatly among populations, a critical issue is the population genetics underlying calculation of the probabilities of unrelated individuals having identical multi-locus genotypes. Here we report on progress in identifying SNPs that show little allele frequency variation among a worldwide sample of 40 populations, i.e., have a low F(st), while remaining highly informative. Such markers have match probabilities that are nearly uniform irrespective of population and become candidates for a universally applicable individual identification panel applicable in forensics and paternity testing. They are also immediately useful for efficient sample identification/tagging in large biomedical, association, and epidemiologic studies. Using our previously described strategy for both identifying and characterizing such SNPs (Kidd et al. in Forensic Sci Int 164:20-32, 2006), we have now screened a total of 432 SNPs likely a priori to have high heterozygosity and low allele frequency variation and from these have selected the markers with the lowest F(st) in our set of 40 populations to produce a panel of 40 low F(st), high heterozygosity SNPs. Collectively these SNPs give average match probabilities of less than 10(-16) in most of the 40 populations and less than 10(-14) in all but one small isolated population; the range is 2.02 x 10(-17) to 1.29 x 10(-13). These 40 SNPs constitute excellent candidates for the global forensic community to consider for a universally applicable SNP panel for human identification. The relative ease with which these markers could be identified also provides a cautionary lesson for investigations of possible balancing selection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00439-007-0342-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7600014", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1085982", 
        "issn": [
          "0340-6717", 
          "1432-1203"
        ], 
        "name": "Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "Candidate SNPs for a universal individual identification panel", 
    "pagination": "305-317", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db3e198a6cfcd2a68ecb46c06b97f184962ee82da1e653f2b6b13170bad290ba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17333283"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7613873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00439-007-0342-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046026004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00439-007-0342-2", 
      "https://app.dimensions.ai/details/publication/pub.1046026004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13081_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00439-007-0342-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00439-007-0342-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00439-007-0342-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00439-007-0342-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00439-007-0342-2'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      67 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00439-007-0342-2 schema:about N101d577ef7cb47139bf3be42835c6808
2 N16874e39c614496ea139c774814c3799
3 N46bf8dc80c0a4733b6b74e080169ed38
4 N4bad06a7fc6c4dcf9d7c844160afc522
5 N5345389fd75f426083aea27881389b72
6 N89a91af80a1a4957ab562f86dcab0e3b
7 N8a40f2db944041ec9d1d557df5a6ae39
8 Na7b3204764f142fcb6dc4c7b16185680
9 Nd704e27abdde4926997c688bcbcee72b
10 Ne033015dc2d84ac7aa0abf789c0f387d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nf0fbbc6c8c6446e9be6950c6019afb78
14 schema:citation sg:pub.10.1038/nature02168
15 sg:pub.10.1038/nature04226
16 sg:pub.10.1038/ng1438
17 sg:pub.10.1186/1479-7364-2-2-81
18 https://app.dimensions.ai/details/publication/pub.1078861211
19 https://app.dimensions.ai/details/publication/pub.1082805247
20 https://doi.org/10.1002/(sici)1096-8644(199902)108:2<137::aid-ajpa1>3.0.co;2-k
21 https://doi.org/10.1002/elps.200500671
22 https://doi.org/10.1006/geno.1995.9003
23 https://doi.org/10.1016/j.forsciint.2004.03.005
24 https://doi.org/10.1016/j.forsciint.2004.04.073
25 https://doi.org/10.1016/j.forsciint.2004.06.018
26 https://doi.org/10.1016/j.forsciint.2004.07.014
27 https://doi.org/10.1016/j.forsciint.2004.12.011
28 https://doi.org/10.1016/j.forsciint.2005.05.036
29 https://doi.org/10.1016/j.forsciint.2005.11.017
30 https://doi.org/10.1016/j.forsciint.2005.11.025
31 https://doi.org/10.1016/j.forsciint.2006.06.010
32 https://doi.org/10.1016/j.gde.2004.04.008
33 https://doi.org/10.1016/s0040-5809(03)00007-8
34 https://doi.org/10.1016/s1355-0306(04)71685-8
35 https://doi.org/10.1046/j.1469-1809.2002.00108.x
36 https://doi.org/10.1093/hmg/8.10.1913
37 https://doi.org/10.1093/jhered/esh060
38 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
39 https://doi.org/10.1111/j.1530-0277.2002.tb02481.x
40 https://doi.org/10.1126/science.1078311
41 https://doi.org/10.1520/jfs2004245
42 schema:datePublished 2007-05
43 schema:datePublishedReg 2007-05-01
44 schema:description Single nucleotide polymorphisms (SNPs) are likely in the near future to have a fundamental role both in human identification and description. However, because allele frequencies can vary greatly among populations, a critical issue is the population genetics underlying calculation of the probabilities of unrelated individuals having identical multi-locus genotypes. Here we report on progress in identifying SNPs that show little allele frequency variation among a worldwide sample of 40 populations, i.e., have a low F(st), while remaining highly informative. Such markers have match probabilities that are nearly uniform irrespective of population and become candidates for a universally applicable individual identification panel applicable in forensics and paternity testing. They are also immediately useful for efficient sample identification/tagging in large biomedical, association, and epidemiologic studies. Using our previously described strategy for both identifying and characterizing such SNPs (Kidd et al. in Forensic Sci Int 164:20-32, 2006), we have now screened a total of 432 SNPs likely a priori to have high heterozygosity and low allele frequency variation and from these have selected the markers with the lowest F(st) in our set of 40 populations to produce a panel of 40 low F(st), high heterozygosity SNPs. Collectively these SNPs give average match probabilities of less than 10(-16) in most of the 40 populations and less than 10(-14) in all but one small isolated population; the range is 2.02 x 10(-17) to 1.29 x 10(-13). These 40 SNPs constitute excellent candidates for the global forensic community to consider for a universally applicable SNP panel for human identification. The relative ease with which these markers could be identified also provides a cautionary lesson for investigations of possible balancing selection.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N06ff1087f4074e3e91f9a34d1049c5f1
49 Ne1dac050354b44a09b2e3eaa872491b7
50 sg:journal.1085982
51 schema:name Candidate SNPs for a universal individual identification panel
52 schema:pagination 305-317
53 schema:productId N412e857f72db4e67ab104ec1dd9fa4bd
54 N785917ab82b241338e6eb90692764cfc
55 N7bcd29f94962451c8f9d7ccab700b9ea
56 N9048862c2856487f8a01e3ded54ce745
57 Ne45c344b6d964cbab469f9aca3989976
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026004
59 https://doi.org/10.1007/s00439-007-0342-2
60 schema:sdDatePublished 2019-04-11T14:28
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N4dbbeaeaa78248bdb4ed34e1723fb35d
63 schema:url https://link.springer.com/10.1007%2Fs00439-007-0342-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N06ff1087f4074e3e91f9a34d1049c5f1 schema:issueNumber 3-4
68 rdf:type schema:PublicationIssue
69 N101d577ef7cb47139bf3be42835c6808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Genetics, Population
71 rdf:type schema:DefinedTerm
72 N16874e39c614496ea139c774814c3799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Genotype
74 rdf:type schema:DefinedTerm
75 N412e857f72db4e67ab104ec1dd9fa4bd schema:name dimensions_id
76 schema:value pub.1046026004
77 rdf:type schema:PropertyValue
78 N4435fd68fde740f2b6457ad83a960ba3 rdf:first sg:person.01306046677.16
79 rdf:rest N4673de2353d14d218ee509c3bf850583
80 N4673de2353d14d218ee509c3bf850583 rdf:first sg:person.01216111541.41
81 rdf:rest Ncba4afddbe8749a3b0f97f1527cbe562
82 N46bf8dc80c0a4733b6b74e080169ed38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Genetic Markers
84 rdf:type schema:DefinedTerm
85 N4bad06a7fc6c4dcf9d7c844160afc522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Gene Frequency
87 rdf:type schema:DefinedTerm
88 N4dbbeaeaa78248bdb4ed34e1723fb35d schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N5345389fd75f426083aea27881389b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Forensic Genetics
92 rdf:type schema:DefinedTerm
93 N785917ab82b241338e6eb90692764cfc schema:name readcube_id
94 schema:value db3e198a6cfcd2a68ecb46c06b97f184962ee82da1e653f2b6b13170bad290ba
95 rdf:type schema:PropertyValue
96 N7bcd29f94962451c8f9d7ccab700b9ea schema:name nlm_unique_id
97 schema:value 7613873
98 rdf:type schema:PropertyValue
99 N89a91af80a1a4957ab562f86dcab0e3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Heterozygote
101 rdf:type schema:DefinedTerm
102 N8a40f2db944041ec9d1d557df5a6ae39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Polymorphism, Single Nucleotide
104 rdf:type schema:DefinedTerm
105 N9048862c2856487f8a01e3ded54ce745 schema:name doi
106 schema:value 10.1007/s00439-007-0342-2
107 rdf:type schema:PropertyValue
108 Na7b3204764f142fcb6dc4c7b16185680 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genetic Testing
110 rdf:type schema:DefinedTerm
111 Ncba4afddbe8749a3b0f97f1527cbe562 rdf:first sg:person.01264224741.31
112 rdf:rest rdf:nil
113 Nd704e27abdde4926997c688bcbcee72b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Paternity
115 rdf:type schema:DefinedTerm
116 Ne033015dc2d84ac7aa0abf789c0f387d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 Ne1dac050354b44a09b2e3eaa872491b7 schema:volumeNumber 121
120 rdf:type schema:PublicationVolume
121 Ne45c344b6d964cbab469f9aca3989976 schema:name pubmed_id
122 schema:value 17333283
123 rdf:type schema:PropertyValue
124 Nf0fbbc6c8c6446e9be6950c6019afb78 rdf:first sg:person.01147776341.54
125 rdf:rest N4435fd68fde740f2b6457ad83a960ba3
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
130 schema:name Genetics
131 rdf:type schema:DefinedTerm
132 sg:grant.7600014 http://pending.schema.org/fundedItem sg:pub.10.1007/s00439-007-0342-2
133 rdf:type schema:MonetaryGrant
134 sg:journal.1085982 schema:issn 0340-6717
135 1432-1203
136 schema:name Human Genetics
137 rdf:type schema:Periodical
138 sg:person.01147776341.54 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
139 schema:familyName Pakstis
140 schema:givenName Andrew J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54
142 rdf:type schema:Person
143 sg:person.01216111541.41 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
144 schema:familyName Kidd
145 schema:givenName Judith R.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41
147 rdf:type schema:Person
148 sg:person.01264224741.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
149 schema:familyName Kidd
150 schema:givenName Kenneth K.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31
152 rdf:type schema:Person
153 sg:person.01306046677.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
154 schema:familyName Speed
155 schema:givenName William C.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16
157 rdf:type schema:Person
158 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
159 https://doi.org/10.1038/nature02168
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
162 https://doi.org/10.1038/nature04226
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ng1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020735175
165 https://doi.org/10.1038/ng1438
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1479-7364-2-2-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077077749
168 https://doi.org/10.1186/1479-7364-2-2-81
169 rdf:type schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1078861211 schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1082805247 schema:CreativeWork
172 https://doi.org/10.1002/(sici)1096-8644(199902)108:2<137::aid-ajpa1>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1045172832
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/elps.200500671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314298
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1006/geno.1995.9003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038103610
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.forsciint.2004.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034395277
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.forsciint.2004.04.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000174112
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.forsciint.2004.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053579903
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.forsciint.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011959945
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.forsciint.2004.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039656724
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.forsciint.2005.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034596237
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.forsciint.2005.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627333
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.forsciint.2005.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000356439
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.forsciint.2006.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022008203
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.gde.2004.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021667031
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0040-5809(03)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020781702
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s1355-0306(04)71685-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068815
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1046/j.1469-1809.2002.00108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039943839
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/hmg/8.10.1913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021239938
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/jhered/esh060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050974654
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1530-0277.2002.tb02481.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011638166
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1078311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962126
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1520/jfs2004245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067619104
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
217 schema:name Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, 06520, New Haven, CT, USA
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...