Addressing drought tolerance in maize by transcriptional profiling and mapping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11-19

AUTHORS

Rosanna Marino, Maharajah Ponnaiah, Pawel Krajewski, Carla Frova, Luca Gianfranceschi, M. Enrico Pè, Mirella Sari-Gorla

ABSTRACT

In order to unravel the genetic architecture underlying plant response to drought, we adopted an integrated approach, combining transcript profiling and quantitative trait loci (QTL) mapping. In fact, improving plant tolerance to water stress is an important, but, at the same time, a difficult task, since plant tolerance is the result of many complex mechanisms acting at different levels of plant organization, and its genetic basis is largely unknown. The phenotypic data, concerning yield components and flowering time, of a population of 142 maize Recombinant Inbred Lines (RILs), grown under well watered conditions or under water stress, were submitted to linkage analysis to detect drought-tolerance QTLs. Thirty genomic regions containing 50 significant QTLs distributed on nine chromosomes were identified. At the same time, a customized targeted oligoarray was used to monitor the expression levels of 1,000 genes, representative of the immature maize kernel transcriptome. Using this DNA array we compared transcripts from 10 days after pollination kernels of two susceptible and two drought tolerant genotypes (extracted from our RILs) grown under control and water stress field conditions. Two hundred and fifty-two genes were significantly affected by stress in at least one genotype. From a set of these, 49 new molecular markers were developed. By mapping most of them and by in silico mapping other regulated sequences, 88 differentially expressed genes were localized onto our linkage map, which, added to the existing 186 markers, brought their total number on the map to 274. Twenty-two of the 88 differentially expressed genes mapped in the same chromosomal segments harbouring QTLs for tolerance, thus representing candidate genes for further functional studies. More... »

PAGES

163-179

References to SciGraph publications

  • 2005-12-01. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants in JOURNAL OF BIOSCIENCES
  • 2000-06. Searching for genetic determinants in the new millennium in NATURE
  • 2005-12-14. Changes in gene expression in maize kernel in response to water and salt stress in PLANT CELL REPORTS
  • 2006-06-13. Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco in PLANT CELL REPORTS
  • 2000-03-01. A multivariate approach to the problem of QTL localization in HEREDITY
  • 2007-02-17. QTL mapping with near-isogenic lines in maize in THEORETICAL AND APPLIED GENETICS
  • 2006-03-15. Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods in THEORETICAL AND APPLIED GENETICS
  • 2003-09. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley in PLANT MOLECULAR BIOLOGY REPORTER
  • 2006-01. Analysis of the Relationships between Growth, Photosynthesis and Carbohydrate Metabolism Using Quantitative Trait Loci (QTLs) in Young Maize Plants Subjected to Water Deprivation in MOLECULAR BREEDING
  • 2004-06-25. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice in MOLECULAR GENETICS AND GENOMICS
  • 2003-11. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat in PLANT AND SOIL
  • 2007-08-01. Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize in PLANT CELL REPORTS
  • 1997-02. Detection of QTL × environment interaction in maize by a least squares interval mapping method in HEREDITY
  • 2007-07-31. Identification of functional candidate genes for drought tolerance in rice in MOLECULAR GENETICS AND GENOMICS
  • 1992-10. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers in HEREDITY
  • 1999-07. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering in THEORETICAL AND APPLIED GENETICS
  • 2003-11. The nature and identification of quantitative trait loci: a community's view in NATURE REVIEWS GENETICS
  • 1999-07. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00438-008-0401-y

    DOI

    http://dx.doi.org/10.1007/s00438-008-0401-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019569637

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19018570


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptation, Physiological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Droughts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Linkage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marino", 
            "givenName": "Rosanna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ponnaiah", 
            "givenName": "Maharajah", 
            "id": "sg:person.010353040111.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353040111.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Plant Genetics, Polish Academy of Science, Strzeszy\u0144ska 34, 60-479, Poznan, Poland", 
              "id": "http://www.grid.ac/institutes/grid.425086.d", 
              "name": [
                "Institute of Plant Genetics, Polish Academy of Science, Strzeszy\u0144ska 34, 60-479, Poznan, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krajewski", 
            "givenName": "Pawel", 
            "id": "sg:person.0675067307.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675067307.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frova", 
            "givenName": "Carla", 
            "id": "sg:person.0772033504.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gianfranceschi", 
            "givenName": "Luca", 
            "id": "sg:person.0673661330.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673661330.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e8", 
            "givenName": "M. Enrico", 
            "id": "sg:person.0722026207.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722026207.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sari-Gorla", 
            "givenName": "Mirella", 
            "id": "sg:person.0577233307.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02772803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024192636", 
              "https://doi.org/10.1007/bf02772803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0512-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051794211", 
              "https://doi.org/10.1007/s00122-007-0512-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0204-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038046631", 
              "https://doi.org/10.1007/s00122-005-0204-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-006-0177-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015484011", 
              "https://doi.org/10.1007/s00299-006-0177-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051065086", 
              "https://doi.org/10.1038/35015718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025855051", 
              "https://doi.org/10.1038/hdy.1997.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-1025-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053602680", 
              "https://doi.org/10.1007/s00438-004-1025-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004451236", 
              "https://doi.org/10.1007/s001220051234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-005-0037-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026957169", 
              "https://doi.org/10.1007/s00299-005-0037-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026237816578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009270556", 
              "https://doi.org/10.1023/a:1026237816578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1046/j.1365-2540.2000.00675.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019981137", 
              "https://doi.org/10.1046/j.1365-2540.2000.00675.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1992.131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003515428", 
              "https://doi.org/10.1038/hdy.1992.131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024752029", 
              "https://doi.org/10.1007/s001220051233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-005-1031-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008815670", 
              "https://doi.org/10.1007/s11032-005-1031-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-007-0419-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052331312", 
              "https://doi.org/10.1007/s00299-007-0419-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003690515", 
              "https://doi.org/10.1038/nrg1206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02703574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018570995", 
              "https://doi.org/10.1007/bf02703574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-007-0276-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036178678", 
              "https://doi.org/10.1007/s00438-007-0276-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-11-19", 
        "datePublishedReg": "2008-11-19", 
        "description": "In order to unravel the genetic architecture underlying plant response to drought, we adopted an integrated approach, combining transcript profiling and quantitative trait loci (QTL) mapping. In fact, improving plant tolerance to water stress is an important, but, at the same time, a difficult task, since plant tolerance is the result of many complex mechanisms acting at different levels of plant organization, and its genetic basis is largely unknown. The phenotypic data, concerning yield components and flowering time, of a population of 142 maize Recombinant Inbred Lines (RILs), grown under well watered conditions or under water stress, were submitted to linkage analysis to detect drought-tolerance QTLs. Thirty genomic regions containing 50 significant QTLs distributed on nine chromosomes were identified. At the same time, a customized targeted oligoarray was used to monitor the expression levels of 1,000 genes, representative of the immature maize kernel transcriptome. Using this DNA array we compared transcripts from 10\u00a0days after pollination kernels of two susceptible and two drought tolerant genotypes (extracted from our RILs) grown under control and water stress field conditions. Two hundred and fifty-two genes were significantly affected by stress in at least one genotype. From a set of these, 49 new molecular markers were developed. By mapping most of them and by in silico mapping other regulated sequences, 88 differentially expressed genes were localized onto our linkage map, which, added to the existing 186 markers, brought their total number on the map to 274. Twenty-two of the 88 differentially expressed genes mapped in the same chromosomal segments harbouring QTLs for tolerance, thus representing candidate genes for further functional studies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00438-008-0401-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297380", 
            "issn": [
              "1617-4615", 
              "1432-1874"
            ], 
            "name": "Molecular Genetics and Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "281"
          }
        ], 
        "keywords": [
          "plant tolerance", 
          "water-stressed field conditions", 
          "water stress", 
          "quantitative trait locus (QTL) mapping", 
          "drought tolerance QTL", 
          "trait locus mapping", 
          "drought-tolerant genotypes", 
          "further functional studies", 
          "same chromosomal segment", 
          "maize recombinant", 
          "drought tolerance", 
          "genetic architecture", 
          "plant responses", 
          "transcript profiling", 
          "linkage map", 
          "genomic regions", 
          "significant QTL", 
          "new molecular markers", 
          "silico mapping", 
          "locus mapping", 
          "transcriptional profiling", 
          "chromosomal segments", 
          "genetic basis", 
          "regulated sequence", 
          "tolerant genotypes", 
          "phenotypic data", 
          "candidate genes", 
          "plant organization", 
          "DNA arrays", 
          "QTL", 
          "molecular markers", 
          "genes", 
          "functional studies", 
          "yield components", 
          "expression levels", 
          "field conditions", 
          "complex mechanisms", 
          "profiling", 
          "stress field conditions", 
          "tolerance", 
          "genotypes", 
          "transcriptome", 
          "oligoarray", 
          "chromosomes", 
          "transcripts", 
          "recombinants", 
          "maize", 
          "drought", 
          "stress", 
          "markers", 
          "sequence", 
          "mapping", 
          "different levels", 
          "mechanism", 
          "levels", 
          "integrated approach", 
          "population", 
          "total number", 
          "lines", 
          "region", 
          "representatives", 
          "maps", 
          "response", 
          "segments", 
          "conditions", 
          "basis", 
          "components", 
          "array", 
          "analysis", 
          "number", 
          "same time", 
          "organization", 
          "control", 
          "study", 
          "time", 
          "architecture", 
          "data", 
          "results", 
          "set", 
          "fact", 
          "kernel", 
          "days", 
          "approach", 
          "order", 
          "difficult task", 
          "task"
        ], 
        "name": "Addressing drought tolerance in maize by transcriptional profiling and mapping", 
        "pagination": "163-179", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019569637"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00438-008-0401-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19018570"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00438-008-0401-y", 
          "https://app.dimensions.ai/details/publication/pub.1019569637"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_464.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00438-008-0401-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00438-008-0401-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00438-008-0401-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00438-008-0401-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00438-008-0401-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    304 TRIPLES      22 PREDICATES      140 URIs      113 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00438-008-0401-y schema:about N1a327626980e4f749736e55648b6d2b5
    2 N366256dbc33349d4b1abaf2d4f2feb52
    3 N3f38413fff15404786aeedd019cf6481
    4 N42565ec30fc646d0b4f41d43c3a836f2
    5 N823ccc9616c9400f813ec87a65e5b0c7
    6 N9c0f03ded70d4cf79f1e18ac4a601579
    7 Nec810c5a017a482bb14cc5fc5d4f87aa
    8 Nef8dfb47ddc94965a6c730e1d74a8f12
    9 Nf5baaa2a7d8242688ca0a50f70c4dfab
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 anzsrc-for:0607
    13 schema:author N8cde4161e0c94835bab4d6da068b0279
    14 schema:citation sg:pub.10.1007/bf02703574
    15 sg:pub.10.1007/bf02772803
    16 sg:pub.10.1007/s00122-005-0204-z
    17 sg:pub.10.1007/s00122-007-0512-6
    18 sg:pub.10.1007/s001220051233
    19 sg:pub.10.1007/s001220051234
    20 sg:pub.10.1007/s00299-005-0037-x
    21 sg:pub.10.1007/s00299-006-0177-7
    22 sg:pub.10.1007/s00299-007-0419-3
    23 sg:pub.10.1007/s00438-004-1025-5
    24 sg:pub.10.1007/s00438-007-0276-3
    25 sg:pub.10.1007/s11032-005-1031-2
    26 sg:pub.10.1023/a:1026237816578
    27 sg:pub.10.1038/35015718
    28 sg:pub.10.1038/hdy.1992.131
    29 sg:pub.10.1038/hdy.1997.22
    30 sg:pub.10.1038/nrg1206
    31 sg:pub.10.1046/j.1365-2540.2000.00675.x
    32 schema:datePublished 2008-11-19
    33 schema:datePublishedReg 2008-11-19
    34 schema:description In order to unravel the genetic architecture underlying plant response to drought, we adopted an integrated approach, combining transcript profiling and quantitative trait loci (QTL) mapping. In fact, improving plant tolerance to water stress is an important, but, at the same time, a difficult task, since plant tolerance is the result of many complex mechanisms acting at different levels of plant organization, and its genetic basis is largely unknown. The phenotypic data, concerning yield components and flowering time, of a population of 142 maize Recombinant Inbred Lines (RILs), grown under well watered conditions or under water stress, were submitted to linkage analysis to detect drought-tolerance QTLs. Thirty genomic regions containing 50 significant QTLs distributed on nine chromosomes were identified. At the same time, a customized targeted oligoarray was used to monitor the expression levels of 1,000 genes, representative of the immature maize kernel transcriptome. Using this DNA array we compared transcripts from 10 days after pollination kernels of two susceptible and two drought tolerant genotypes (extracted from our RILs) grown under control and water stress field conditions. Two hundred and fifty-two genes were significantly affected by stress in at least one genotype. From a set of these, 49 new molecular markers were developed. By mapping most of them and by in silico mapping other regulated sequences, 88 differentially expressed genes were localized onto our linkage map, which, added to the existing 186 markers, brought their total number on the map to 274. Twenty-two of the 88 differentially expressed genes mapped in the same chromosomal segments harbouring QTLs for tolerance, thus representing candidate genes for further functional studies.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N4f7521bd079f46da9e01a636c6e353f0
    39 Nebba1d486be84371a601e6f94870ac66
    40 sg:journal.1297380
    41 schema:keywords DNA arrays
    42 QTL
    43 analysis
    44 approach
    45 architecture
    46 array
    47 basis
    48 candidate genes
    49 chromosomal segments
    50 chromosomes
    51 complex mechanisms
    52 components
    53 conditions
    54 control
    55 data
    56 days
    57 different levels
    58 difficult task
    59 drought
    60 drought tolerance
    61 drought tolerance QTL
    62 drought-tolerant genotypes
    63 expression levels
    64 fact
    65 field conditions
    66 functional studies
    67 further functional studies
    68 genes
    69 genetic architecture
    70 genetic basis
    71 genomic regions
    72 genotypes
    73 integrated approach
    74 kernel
    75 levels
    76 lines
    77 linkage map
    78 locus mapping
    79 maize
    80 maize recombinant
    81 mapping
    82 maps
    83 markers
    84 mechanism
    85 molecular markers
    86 new molecular markers
    87 number
    88 oligoarray
    89 order
    90 organization
    91 phenotypic data
    92 plant organization
    93 plant responses
    94 plant tolerance
    95 population
    96 profiling
    97 quantitative trait locus (QTL) mapping
    98 recombinants
    99 region
    100 regulated sequence
    101 representatives
    102 response
    103 results
    104 same chromosomal segment
    105 same time
    106 segments
    107 sequence
    108 set
    109 significant QTL
    110 silico mapping
    111 stress
    112 stress field conditions
    113 study
    114 task
    115 time
    116 tolerance
    117 tolerant genotypes
    118 total number
    119 trait locus mapping
    120 transcript profiling
    121 transcriptional profiling
    122 transcriptome
    123 transcripts
    124 water stress
    125 water-stressed field conditions
    126 yield components
    127 schema:name Addressing drought tolerance in maize by transcriptional profiling and mapping
    128 schema:pagination 163-179
    129 schema:productId N99fadaa8a9c6406b855e11885d8db0f9
    130 Nb5974959d6634965a1e4d36b2145c34c
    131 Nf7a14847eb6e4b4bbd0395b8ce3a72af
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019569637
    133 https://doi.org/10.1007/s00438-008-0401-y
    134 schema:sdDatePublished 2022-06-01T22:07
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher N64dbbafbffd941108ec252723b7cb4f9
    137 schema:url https://doi.org/10.1007/s00438-008-0401-y
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N1a327626980e4f749736e55648b6d2b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Quantitative Trait Loci
    143 rdf:type schema:DefinedTerm
    144 N366256dbc33349d4b1abaf2d4f2feb52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Droughts
    146 rdf:type schema:DefinedTerm
    147 N3f38413fff15404786aeedd019cf6481 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Genetic Linkage
    149 rdf:type schema:DefinedTerm
    150 N42565ec30fc646d0b4f41d43c3a836f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Adaptation, Physiological
    152 rdf:type schema:DefinedTerm
    153 N4f7521bd079f46da9e01a636c6e353f0 schema:volumeNumber 281
    154 rdf:type schema:PublicationVolume
    155 N5ebfdbae3ee749c68bf2cab41c976b15 rdf:first sg:person.0577233307.74
    156 rdf:rest rdf:nil
    157 N64dbbafbffd941108ec252723b7cb4f9 schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 N7388fcb9327f4a4aa4fdb0a470697bc1 rdf:first sg:person.0675067307.03
    160 rdf:rest Nc52c5efde5f945bd9613939f449d2068
    161 N77dabf9496c640d09b054f02d0083525 rdf:first sg:person.010353040111.43
    162 rdf:rest N7388fcb9327f4a4aa4fdb0a470697bc1
    163 N823ccc9616c9400f813ec87a65e5b0c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Gene Expression Profiling
    165 rdf:type schema:DefinedTerm
    166 N843e917205404938b49040dd633469af rdf:first sg:person.0673661330.19
    167 rdf:rest Nc9e47004f7bf4a68803fd81232cea96e
    168 N8cde4161e0c94835bab4d6da068b0279 rdf:first Ne758ba06afac492eb30e0d8736a161fc
    169 rdf:rest N77dabf9496c640d09b054f02d0083525
    170 N99fadaa8a9c6406b855e11885d8db0f9 schema:name doi
    171 schema:value 10.1007/s00438-008-0401-y
    172 rdf:type schema:PropertyValue
    173 N9c0f03ded70d4cf79f1e18ac4a601579 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Zea mays
    175 rdf:type schema:DefinedTerm
    176 Nb5974959d6634965a1e4d36b2145c34c schema:name pubmed_id
    177 schema:value 19018570
    178 rdf:type schema:PropertyValue
    179 Nc52c5efde5f945bd9613939f449d2068 rdf:first sg:person.0772033504.06
    180 rdf:rest N843e917205404938b49040dd633469af
    181 Nc9e47004f7bf4a68803fd81232cea96e rdf:first sg:person.0722026207.12
    182 rdf:rest N5ebfdbae3ee749c68bf2cab41c976b15
    183 Ne758ba06afac492eb30e0d8736a161fc schema:affiliation grid-institutes:grid.4708.b
    184 schema:familyName Marino
    185 schema:givenName Rosanna
    186 rdf:type schema:Person
    187 Nebba1d486be84371a601e6f94870ac66 schema:issueNumber 2
    188 rdf:type schema:PublicationIssue
    189 Nec810c5a017a482bb14cc5fc5d4f87aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Oligonucleotide Array Sequence Analysis
    191 rdf:type schema:DefinedTerm
    192 Nef8dfb47ddc94965a6c730e1d74a8f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Transcription, Genetic
    194 rdf:type schema:DefinedTerm
    195 Nf5baaa2a7d8242688ca0a50f70c4dfab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Chromosome Mapping
    197 rdf:type schema:DefinedTerm
    198 Nf7a14847eb6e4b4bbd0395b8ce3a72af schema:name dimensions_id
    199 schema:value pub.1019569637
    200 rdf:type schema:PropertyValue
    201 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Biological Sciences
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Genetics
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Plant Biology
    209 rdf:type schema:DefinedTerm
    210 sg:journal.1297380 schema:issn 1432-1874
    211 1617-4615
    212 schema:name Molecular Genetics and Genomics
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.010353040111.43 schema:affiliation grid-institutes:grid.4708.b
    216 schema:familyName Ponnaiah
    217 schema:givenName Maharajah
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353040111.43
    219 rdf:type schema:Person
    220 sg:person.0577233307.74 schema:affiliation grid-institutes:grid.4708.b
    221 schema:familyName Sari-Gorla
    222 schema:givenName Mirella
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74
    224 rdf:type schema:Person
    225 sg:person.0673661330.19 schema:affiliation grid-institutes:grid.4708.b
    226 schema:familyName Gianfranceschi
    227 schema:givenName Luca
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673661330.19
    229 rdf:type schema:Person
    230 sg:person.0675067307.03 schema:affiliation grid-institutes:grid.425086.d
    231 schema:familyName Krajewski
    232 schema:givenName Pawel
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675067307.03
    234 rdf:type schema:Person
    235 sg:person.0722026207.12 schema:affiliation grid-institutes:grid.4708.b
    236 schema:familyName
    237 schema:givenName M. Enrico
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722026207.12
    239 rdf:type schema:Person
    240 sg:person.0772033504.06 schema:affiliation grid-institutes:grid.4708.b
    241 schema:familyName Frova
    242 schema:givenName Carla
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06
    244 rdf:type schema:Person
    245 sg:pub.10.1007/bf02703574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018570995
    246 https://doi.org/10.1007/bf02703574
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/bf02772803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024192636
    249 https://doi.org/10.1007/bf02772803
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00122-005-0204-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046631
    252 https://doi.org/10.1007/s00122-005-0204-z
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00122-007-0512-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051794211
    255 https://doi.org/10.1007/s00122-007-0512-6
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s001220051233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024752029
    258 https://doi.org/10.1007/s001220051233
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s001220051234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004451236
    261 https://doi.org/10.1007/s001220051234
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00299-005-0037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026957169
    264 https://doi.org/10.1007/s00299-005-0037-x
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00299-006-0177-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015484011
    267 https://doi.org/10.1007/s00299-006-0177-7
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00299-007-0419-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052331312
    270 https://doi.org/10.1007/s00299-007-0419-3
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00438-004-1025-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602680
    273 https://doi.org/10.1007/s00438-004-1025-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00438-007-0276-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036178678
    276 https://doi.org/10.1007/s00438-007-0276-3
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s11032-005-1031-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008815670
    279 https://doi.org/10.1007/s11032-005-1031-2
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1023/a:1026237816578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009270556
    282 https://doi.org/10.1023/a:1026237816578
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/35015718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051065086
    285 https://doi.org/10.1038/35015718
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/hdy.1992.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003515428
    288 https://doi.org/10.1038/hdy.1992.131
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/hdy.1997.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025855051
    291 https://doi.org/10.1038/hdy.1997.22
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nrg1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003690515
    294 https://doi.org/10.1038/nrg1206
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1046/j.1365-2540.2000.00675.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019981137
    297 https://doi.org/10.1046/j.1365-2540.2000.00675.x
    298 rdf:type schema:CreativeWork
    299 grid-institutes:grid.425086.d schema:alternateName Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479, Poznan, Poland
    300 schema:name Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479, Poznan, Poland
    301 rdf:type schema:Organization
    302 grid-institutes:grid.4708.b schema:alternateName Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy
    303 schema:name Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133, Milan, Italy
    304 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...