MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09-06

AUTHORS

Theodore Alexandrov, Michael Becker, Orlando Guntinas-Lichius, Günther Ernst, Ferdinand von Eggeling

ABSTRACT

PurposeFor several decades, conventional histological staining and immunohistochemistry (IHC) have been the main tools to visualize and understand tissue morphology and structure. IHC visualizes the spatial distribution of individual protein species directly in tissue. However, a specific antibody is required for each protein, and multiplexing capabilities are extremely limited, rarely visualizing more than two proteins simultaneously. With the recent emergence of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-imaging), it is becoming possible to study more complex proteomic patterns directly in tissue. However, the analysis and interpretation of large and complex MALDI-imaging data requires advanced computational methods. In this paper, we show how the recently introduced method of spatial segmentation can be applied to analysis and interpretation of a larynx carcinoma section and compare the spatial segmentation with the histological annotation of the same tissue section.MethodsMatrix-assisted laser desorption/ionization imaging is a label-free spatially resolved analytical technique, which allows detection and visualization of hundreds of proteins at once. Spatial segmentation of the MALDI-imaging data by clustering of spectra by their similarity was performed, automatically generating spatial a segmentation map of the tissue section, where regions of similar proteomic patterns were highlighted. The tissue was stained with the hematoxylin and eosin (H&E), histopathologically analyzed and annotated. The segmentation map was interpreted after its overlay with the H&E microscopy image.ResultsThe automatically generated segmentation map exhibits high correspondence to the detailed histological annotation of the larynx carcinoma tissue section. By superimposing, the segmentation map based on the proteomic profiles with H&E-stained microscopic images, we demonstrate precise localization of complex and histopathologically relevant tissue features in an automated way.ConclusionsThe combination of MALDI-imaging and automatic spatial segmentation is a useful approach in analyzing carcinoma tissue and provides a deeper insight into the functional proteomic organization of the respective tissue. More... »

PAGES

85-95

References to SciGraph publications

  • 1999-12. Proteinchip® surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures in PROSTATE CANCER AND PROSTATIC DISEASES
  • 2007-01. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells in ARCHIVES OF PHARMACAL RESEARCH
  • 2010-08-04. MALDI imaging and profiling MS of higher mass proteins from tissue in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2008-07-11. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology in HISTOCHEMISTRY AND CELL BIOLOGY
  • 2005-01-19. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study in BMC CANCER
  • 2011-04-26. Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2007-09-02. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock in NATURE MEDICINE
  • 2011-05-04. MALDI tissue imaging: from biomarker discovery to clinical applications in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2006-06-06. Identification of serum biomarkers for colon cancer by proteomic analysis in BRITISH JOURNAL OF CANCER
  • 2005-10-01. MALDI-MS imaging of features smaller than the size of the laser beam in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00432-012-1303-2

    DOI

    http://dx.doi.org/10.1007/s00432-012-1303-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040916337

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22955295


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Laryngeal Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Center for Industrial Mathematics (ZeTeM), University of Bremen, Bibliothekstr. 1, 28359, Bremen, Germany", 
                "Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alexandrov", 
            "givenName": "Theodore", 
            "id": "sg:person.01204640152.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.423218.e", 
              "name": [
                "Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Becker", 
            "givenName": "Michael", 
            "id": "sg:person.01300562560.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300562560.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Otorhinolaryngology, University Hospital Jena, 07740, Jena, Germany", 
              "id": "http://www.grid.ac/institutes/grid.275559.9", 
              "name": [
                "Department of Otorhinolaryngology, University Hospital Jena, 07740, Jena, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guntinas-Lichius", 
            "givenName": "Orlando", 
            "id": "sg:person.0765673217.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765673217.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany", 
              "id": "http://www.grid.ac/institutes/grid.275559.9", 
              "name": [
                "Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ernst", 
            "givenName": "G\u00fcnther", 
            "id": "sg:person.01142060154.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142060154.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany", 
              "id": "http://www.grid.ac/institutes/grid.275559.9", 
              "name": [
                "Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Eggeling", 
            "givenName": "Ferdinand", 
            "id": "sg:person.01354646177.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354646177.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00216-011-5003-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044980386", 
              "https://doi.org/10.1007/s00216-011-5003-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-5-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023124080", 
              "https://doi.org/10.1186/1471-2407-5-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046044565", 
              "https://doi.org/10.1038/nm1638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2010.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053045815", 
              "https://doi.org/10.1016/j.jasms.2010.07.011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02977781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023570084", 
              "https://doi.org/10.1007/bf02977781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.pcan.4500384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049082503", 
              "https://doi.org/10.1038/sj.pcan.4500384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00418-008-0469-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042068320", 
              "https://doi.org/10.1007/s00418-008-0469-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2005.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035514709", 
              "https://doi.org/10.1016/j.jasms.2005.06.006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6603188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036624630", 
              "https://doi.org/10.1038/sj.bjc.6603188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-011-4990-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024409443", 
              "https://doi.org/10.1007/s00216-011-4990-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09-06", 
        "datePublishedReg": "2012-09-06", 
        "description": "PurposeFor several decades, conventional histological staining and immunohistochemistry (IHC) have been the main tools to visualize and understand tissue morphology and structure. IHC visualizes the spatial distribution of individual protein species directly in tissue. However, a specific antibody is required for each protein, and multiplexing capabilities are extremely limited, rarely visualizing more than two proteins simultaneously. With the recent emergence of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-imaging), it is becoming possible to study more complex proteomic patterns directly in tissue. However, the analysis and interpretation of large and complex MALDI-imaging data requires advanced computational methods. In this paper, we show how the recently introduced method of spatial segmentation can be applied to analysis and interpretation of a larynx carcinoma section and compare the spatial segmentation with the histological annotation of the same tissue section.MethodsMatrix-assisted laser desorption/ionization imaging is a label-free spatially resolved analytical technique, which allows detection and visualization of hundreds of proteins at once. Spatial segmentation of the MALDI-imaging data by clustering of spectra by their similarity was performed, automatically generating spatial a segmentation map of the tissue section, where regions of similar proteomic patterns were highlighted. The tissue was stained with the hematoxylin and eosin (H&E), histopathologically analyzed and annotated. The segmentation map was interpreted after its overlay with the H&E microscopy image.ResultsThe automatically generated segmentation map exhibits high correspondence to the detailed histological annotation of the larynx carcinoma tissue section. By superimposing, the segmentation map based on the proteomic profiles with H&E-stained microscopic images, we demonstrate precise localization of complex and histopathologically relevant tissue features in an automated way.ConclusionsThe combination of MALDI-imaging and automatic spatial segmentation is a useful approach in analyzing carcinoma tissue and provides a deeper insight into the functional proteomic organization of the respective tissue.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00432-012-1303-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313647", 
            "issn": [
              "0171-5216", 
              "1432-1335"
            ], 
            "name": "Journal of Cancer Research and Clinical Oncology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "139"
          }
        ], 
        "keywords": [
          "functional proteomic analysis", 
          "individual protein species", 
          "proteomic patterns", 
          "visualization of hundreds", 
          "Proteomics Organization", 
          "laser desorption/ionization imaging", 
          "protein species", 
          "proteomic analysis", 
          "proteomic profiles", 
          "imaging mass spectrometry", 
          "laser desorption/ionization imaging mass spectrometry", 
          "matrix-assisted laser desorption/ionization imaging mass spectrometry", 
          "ionization imaging mass spectrometry", 
          "relevant tissues", 
          "respective tissues", 
          "protein", 
          "human larynx carcinoma", 
          "tissue sections", 
          "annotation", 
          "advanced computational methods", 
          "mass spectrometry", 
          "MethodsMatrix", 
          "tissue", 
          "specific antibodies", 
          "conventional histological staining", 
          "powerful tool", 
          "computational methods", 
          "same tissue section", 
          "MALDI", 
          "carcinoma tissue sections", 
          "carcinoma tissues", 
          "species", 
          "precise localization", 
          "deeper insight", 
          "tissue morphology", 
          "recent emergence", 
          "histological staining", 
          "useful approach", 
          "localization", 
          "high correspondence", 
          "patterns", 
          "spatial distribution", 
          "larynx carcinoma", 
          "similarity", 
          "immunohistochemistry", 
          "histological annotation", 
          "carcinoma sections", 
          "insights", 
          "maps", 
          "analysis", 
          "ionization imaging", 
          "hundreds", 
          "staining", 
          "spectrometry", 
          "region", 
          "morphology", 
          "antibodies", 
          "emergence", 
          "tool", 
          "microscopic images", 
          "structure", 
          "microscopy images", 
          "profile", 
          "data", 
          "distribution", 
          "organization", 
          "combination", 
          "decades", 
          "analytical techniques", 
          "carcinoma", 
          "visualization", 
          "sections", 
          "detection", 
          "approach", 
          "interpretation", 
          "overlay", 
          "method", 
          "spatial segmentation", 
          "capability", 
          "spectra", 
          "way", 
          "hematoxylin", 
          "ConclusionsThe combination", 
          "eosin", 
          "correspondence", 
          "imaging", 
          "technique", 
          "main tool", 
          "segmentation", 
          "ResultsThe", 
          "images", 
          "paper", 
          "segmentation map"
        ], 
        "name": "MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma", 
        "pagination": "85-95", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040916337"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00432-012-1303-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22955295"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00432-012-1303-2", 
          "https://app.dimensions.ai/details/publication/pub.1040916337"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_574.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00432-012-1303-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00432-012-1303-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00432-012-1303-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00432-012-1303-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00432-012-1303-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      139 URIs      121 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00432-012-1303-2 schema:about N20389b9b6c034bbba65174a73d2077ad
    2 N38ac163e230c43ee87254714a2944222
    3 N3ddefa4679d945ec957219f40ebd9112
    4 N595b7b99c2b14a65b0c4bf3c9ed281b0
    5 N599385fef62f479aaf29629c46fdb7ff
    6 N5c88dfbd8cdf4ce5b0ac9bd96f643f8e
    7 N685af4169edb434a8a1ba7df223a2d29
    8 N7c550857c5f14f3097d3aedec3541886
    9 N98bbb9d88c63424788f7dc14aa4334d9
    10 Nd417813f01d945b4981ce1816204346a
    11 Nd9222a51f66347c08abc33045aa08a5e
    12 anzsrc-for:11
    13 anzsrc-for:1112
    14 schema:author Ne28ac8edc61c414992ab56ae689ca3b1
    15 schema:citation sg:pub.10.1007/bf02977781
    16 sg:pub.10.1007/s00216-011-4990-7
    17 sg:pub.10.1007/s00216-011-5003-6
    18 sg:pub.10.1007/s00418-008-0469-9
    19 sg:pub.10.1016/j.jasms.2005.06.006
    20 sg:pub.10.1016/j.jasms.2010.07.011
    21 sg:pub.10.1038/nm1638
    22 sg:pub.10.1038/sj.bjc.6603188
    23 sg:pub.10.1038/sj.pcan.4500384
    24 sg:pub.10.1186/1471-2407-5-8
    25 schema:datePublished 2012-09-06
    26 schema:datePublishedReg 2012-09-06
    27 schema:description PurposeFor several decades, conventional histological staining and immunohistochemistry (IHC) have been the main tools to visualize and understand tissue morphology and structure. IHC visualizes the spatial distribution of individual protein species directly in tissue. However, a specific antibody is required for each protein, and multiplexing capabilities are extremely limited, rarely visualizing more than two proteins simultaneously. With the recent emergence of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-imaging), it is becoming possible to study more complex proteomic patterns directly in tissue. However, the analysis and interpretation of large and complex MALDI-imaging data requires advanced computational methods. In this paper, we show how the recently introduced method of spatial segmentation can be applied to analysis and interpretation of a larynx carcinoma section and compare the spatial segmentation with the histological annotation of the same tissue section.MethodsMatrix-assisted laser desorption/ionization imaging is a label-free spatially resolved analytical technique, which allows detection and visualization of hundreds of proteins at once. Spatial segmentation of the MALDI-imaging data by clustering of spectra by their similarity was performed, automatically generating spatial a segmentation map of the tissue section, where regions of similar proteomic patterns were highlighted. The tissue was stained with the hematoxylin and eosin (H&E), histopathologically analyzed and annotated. The segmentation map was interpreted after its overlay with the H&E microscopy image.ResultsThe automatically generated segmentation map exhibits high correspondence to the detailed histological annotation of the larynx carcinoma tissue section. By superimposing, the segmentation map based on the proteomic profiles with H&E-stained microscopic images, we demonstrate precise localization of complex and histopathologically relevant tissue features in an automated way.ConclusionsThe combination of MALDI-imaging and automatic spatial segmentation is a useful approach in analyzing carcinoma tissue and provides a deeper insight into the functional proteomic organization of the respective tissue.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N49f9d3a608524a97a8a7a2fc38d5d617
    31 Nc60e7cf21d0046c08cb21b6eec4f3794
    32 sg:journal.1313647
    33 schema:keywords ConclusionsThe combination
    34 MALDI
    35 MethodsMatrix
    36 Proteomics Organization
    37 ResultsThe
    38 advanced computational methods
    39 analysis
    40 analytical techniques
    41 annotation
    42 antibodies
    43 approach
    44 capability
    45 carcinoma
    46 carcinoma sections
    47 carcinoma tissue sections
    48 carcinoma tissues
    49 combination
    50 computational methods
    51 conventional histological staining
    52 correspondence
    53 data
    54 decades
    55 deeper insight
    56 detection
    57 distribution
    58 emergence
    59 eosin
    60 functional proteomic analysis
    61 hematoxylin
    62 high correspondence
    63 histological annotation
    64 histological staining
    65 human larynx carcinoma
    66 hundreds
    67 images
    68 imaging
    69 imaging mass spectrometry
    70 immunohistochemistry
    71 individual protein species
    72 insights
    73 interpretation
    74 ionization imaging
    75 ionization imaging mass spectrometry
    76 larynx carcinoma
    77 laser desorption/ionization imaging
    78 laser desorption/ionization imaging mass spectrometry
    79 localization
    80 main tool
    81 maps
    82 mass spectrometry
    83 matrix-assisted laser desorption/ionization imaging mass spectrometry
    84 method
    85 microscopic images
    86 microscopy images
    87 morphology
    88 organization
    89 overlay
    90 paper
    91 patterns
    92 powerful tool
    93 precise localization
    94 profile
    95 protein
    96 protein species
    97 proteomic analysis
    98 proteomic patterns
    99 proteomic profiles
    100 recent emergence
    101 region
    102 relevant tissues
    103 respective tissues
    104 same tissue section
    105 sections
    106 segmentation
    107 segmentation map
    108 similarity
    109 spatial distribution
    110 spatial segmentation
    111 species
    112 specific antibodies
    113 spectra
    114 spectrometry
    115 staining
    116 structure
    117 technique
    118 tissue
    119 tissue morphology
    120 tissue sections
    121 tool
    122 useful approach
    123 visualization
    124 visualization of hundreds
    125 way
    126 schema:name MALDI-imaging segmentation is a powerful tool for spatial functional proteomic analysis of human larynx carcinoma
    127 schema:pagination 85-95
    128 schema:productId N0c019fc34d6542cf8f3d6b0e41b894f1
    129 N3c54b57a04e140d9bf600e06214a9dbc
    130 Na79f7b1610584f91b86e741903079f51
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040916337
    132 https://doi.org/10.1007/s00432-012-1303-2
    133 schema:sdDatePublished 2022-10-01T06:37
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher N1654a5d53ee040abae7a5f57f27f15fc
    136 schema:url https://doi.org/10.1007/s00432-012-1303-2
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N0c019fc34d6542cf8f3d6b0e41b894f1 schema:name dimensions_id
    141 schema:value pub.1040916337
    142 rdf:type schema:PropertyValue
    143 N1654a5d53ee040abae7a5f57f27f15fc schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 N20389b9b6c034bbba65174a73d2077ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Adult
    147 rdf:type schema:DefinedTerm
    148 N2bc100d19ae946799d3149d67096cdcd rdf:first sg:person.01354646177.84
    149 rdf:rest rdf:nil
    150 N38ac163e230c43ee87254714a2944222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Humans
    152 rdf:type schema:DefinedTerm
    153 N3b25713349214b1f8ac6eed630c48818 rdf:first sg:person.01300562560.22
    154 rdf:rest Nc19f66244ec9466dbe5202f138664ce4
    155 N3c54b57a04e140d9bf600e06214a9dbc schema:name doi
    156 schema:value 10.1007/s00432-012-1303-2
    157 rdf:type schema:PropertyValue
    158 N3ddefa4679d945ec957219f40ebd9112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Middle Aged
    160 rdf:type schema:DefinedTerm
    161 N49f9d3a608524a97a8a7a2fc38d5d617 schema:volumeNumber 139
    162 rdf:type schema:PublicationVolume
    163 N595b7b99c2b14a65b0c4bf3c9ed281b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    165 rdf:type schema:DefinedTerm
    166 N599385fef62f479aaf29629c46fdb7ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Laryngeal Neoplasms
    168 rdf:type schema:DefinedTerm
    169 N5c88dfbd8cdf4ce5b0ac9bd96f643f8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Carcinoma
    171 rdf:type schema:DefinedTerm
    172 N685af4169edb434a8a1ba7df223a2d29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Image Interpretation, Computer-Assisted
    174 rdf:type schema:DefinedTerm
    175 N7c550857c5f14f3097d3aedec3541886 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Male
    177 rdf:type schema:DefinedTerm
    178 N8e98b6d48fd24d14982ff805b2db01d3 rdf:first sg:person.01142060154.01
    179 rdf:rest N2bc100d19ae946799d3149d67096cdcd
    180 N98bbb9d88c63424788f7dc14aa4334d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Aged
    182 rdf:type schema:DefinedTerm
    183 Na79f7b1610584f91b86e741903079f51 schema:name pubmed_id
    184 schema:value 22955295
    185 rdf:type schema:PropertyValue
    186 Nc19f66244ec9466dbe5202f138664ce4 rdf:first sg:person.0765673217.12
    187 rdf:rest N8e98b6d48fd24d14982ff805b2db01d3
    188 Nc60e7cf21d0046c08cb21b6eec4f3794 schema:issueNumber 1
    189 rdf:type schema:PublicationIssue
    190 Nd417813f01d945b4981ce1816204346a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Female
    192 rdf:type schema:DefinedTerm
    193 Nd9222a51f66347c08abc33045aa08a5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Proteome
    195 rdf:type schema:DefinedTerm
    196 Ne28ac8edc61c414992ab56ae689ca3b1 rdf:first sg:person.01204640152.10
    197 rdf:rest N3b25713349214b1f8ac6eed630c48818
    198 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Medical and Health Sciences
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Oncology and Carcinogenesis
    203 rdf:type schema:DefinedTerm
    204 sg:journal.1313647 schema:issn 0171-5216
    205 1432-1335
    206 schema:name Journal of Cancer Research and Clinical Oncology
    207 schema:publisher Springer Nature
    208 rdf:type schema:Periodical
    209 sg:person.01142060154.01 schema:affiliation grid-institutes:grid.275559.9
    210 schema:familyName Ernst
    211 schema:givenName Günther
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142060154.01
    213 rdf:type schema:Person
    214 sg:person.01204640152.10 schema:affiliation grid-institutes:None
    215 schema:familyName Alexandrov
    216 schema:givenName Theodore
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204640152.10
    218 rdf:type schema:Person
    219 sg:person.01300562560.22 schema:affiliation grid-institutes:grid.423218.e
    220 schema:familyName Becker
    221 schema:givenName Michael
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300562560.22
    223 rdf:type schema:Person
    224 sg:person.01354646177.84 schema:affiliation grid-institutes:grid.275559.9
    225 schema:familyName von Eggeling
    226 schema:givenName Ferdinand
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354646177.84
    228 rdf:type schema:Person
    229 sg:person.0765673217.12 schema:affiliation grid-institutes:grid.275559.9
    230 schema:familyName Guntinas-Lichius
    231 schema:givenName Orlando
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765673217.12
    233 rdf:type schema:Person
    234 sg:pub.10.1007/bf02977781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023570084
    235 https://doi.org/10.1007/bf02977781
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00216-011-4990-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024409443
    238 https://doi.org/10.1007/s00216-011-4990-7
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00216-011-5003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980386
    241 https://doi.org/10.1007/s00216-011-5003-6
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s00418-008-0469-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042068320
    244 https://doi.org/10.1007/s00418-008-0469-9
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1016/j.jasms.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035514709
    247 https://doi.org/10.1016/j.jasms.2005.06.006
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1016/j.jasms.2010.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053045815
    250 https://doi.org/10.1016/j.jasms.2010.07.011
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nm1638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046044565
    253 https://doi.org/10.1038/nm1638
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/sj.bjc.6603188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036624630
    256 https://doi.org/10.1038/sj.bjc.6603188
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/sj.pcan.4500384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049082503
    259 https://doi.org/10.1038/sj.pcan.4500384
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2407-5-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023124080
    262 https://doi.org/10.1186/1471-2407-5-8
    263 rdf:type schema:CreativeWork
    264 grid-institutes:None schema:alternateName Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany
    265 schema:name Center for Industrial Mathematics (ZeTeM), University of Bremen, Bibliothekstr. 1, 28359, Bremen, Germany
    266 Steinbeis Innovation Center for Scientific Computing in Life Sciences, Richard-Dehmel-Str. 69, 28211, Bremen, Germany
    267 rdf:type schema:Organization
    268 grid-institutes:grid.275559.9 schema:alternateName Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany
    269 Department of Otorhinolaryngology, University Hospital Jena, 07740, Jena, Germany
    270 schema:name Core Unit Chip Application, Institute of Human Genetics, University Hospital Jena, 07740, Jena, Germany
    271 Department of Otorhinolaryngology, University Hospital Jena, 07740, Jena, Germany
    272 rdf:type schema:Organization
    273 grid-institutes:grid.423218.e schema:alternateName Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359, Bremen, Germany
    274 schema:name Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359, Bremen, Germany
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...