Baseline elevated leukocyte count in peripheral blood is associated with poor survival in patients with advanced non-small cell lung cancer: ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10

AUTHORS

C. Tibaldi, E. Vasile, I. Bernardini, C. Orlandini, M. Andreuccetti, A. Falcone

ABSTRACT

PURPOSE: We aimed to investigate the prognostic significance of several baseline variables in stage IIIB-IV non-small cell lung cancer to create a model based on independent prognostic factors. METHODS/RESULTS: A total of 320 patients were treated with last generation chemotherapy regimens. The majority of patients received treatment with cisplatin + gemcitabine or gemcitabine alone if older than 70 years or with an ECOG performance status (PS) = 2. Performance status of 2, squamous histology, number of metastatic sites >2, presence of bone, brain, liver and contralateral lung metastases and elevated leukocyte count in peripheral blood were all statistically significant prognostic factors in univariate analyses whereas the other tested variables (sex, stage, age, presence of adrenal gland and skin metastases) were not. Subsequently, a multivariate Cox's regression analysis identified PS 2 (P < 0.001, hazard ratio 2.57), elevated leukocyte count (P < 0.001, hazard ratio 1.79), squamous histology (P = 0.005, hazard ratio 1.45) and presence of brain metastases (P = 0.035, hazard ratio 1.5) as independent prognostic factors for poor survival. Patients were assigned to one of three risk groups according to the cumulative risk defined as the sum of simplified risk scores of the four independent prognostic factors. Low-, intermediate- and high-risk patients achieved a median survival of 10.2 months (95% confidence interval (CI) 8.9-11.6), 5.1 months (95% CI 4.0-6.2) and 2.8 months (95% CI 0.5-5.2), respectively. The high-risk group encompassed PS 2 patients with two or three adjunctive unfavourable independent prognostic factors. CONCLUSIONS: Performance status, white blood cells count, histology and brain metastases resulted in our series prognostic factors of survival in NSCLC patients treated with chemotherapy at a multivariate analysis. Leukocyte count resulted the stronger factor after performance status. If prospectly validated, the proposed prognostic model could be useful to stratify performance status 2 patients in specific future trials. More... »

PAGES

1143-1149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00432-008-0378-2

DOI

http://dx.doi.org/10.1007/s00432-008-0378-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000156056

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18347812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukocyte Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibaldi", 
        "givenName": "C.", 
        "id": "sg:person.0631427704.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631427704.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasile", 
        "givenName": "E.", 
        "id": "sg:person.01006607213.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006607213.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernardini", 
        "givenName": "I.", 
        "id": "sg:person.0647770505.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647770505.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Santa Chiara Hospital, Via Roma 67, 56100, Pisa, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlandini", 
        "givenName": "C.", 
        "id": "sg:person.0657517373.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657517373.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreuccetti", 
        "givenName": "M.", 
        "id": "sg:person.01210274354.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210274354.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumour Institute of Tuscany", 
          "id": "https://www.grid.ac/institutes/grid.453706.3", 
          "name": [
            "Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy", 
            "University of Pisa, Via Roma 67, 56100, Pisa, Italy", 
            "Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Falcone", 
        "givenName": "A.", 
        "id": "sg:person.01006230145.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006230145.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2004.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004142105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.07.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004496831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.22049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008958604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.56.2.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013642811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018090440", 
          "https://doi.org/10.1038/sj.bjc.6602702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018090440", 
          "https://doi.org/10.1038/sj.bjc.6602702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-003-0471-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020690373", 
          "https://doi.org/10.1007/s00432-003-0471-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.2781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022755454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.10.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039125504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044060493", 
          "https://doi.org/10.1038/sj.bjc.6600768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044060493", 
          "https://doi.org/10.1038/sj.bjc.6600768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(20011101)92:9<2399::aid-cncr1588>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044071451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1958.10501452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2002.12.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.12.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-002-0408-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075261701", 
          "https://doi.org/10.1007/s00432-002-0408-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1995.13.5.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082487053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083269732", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "PURPOSE: We aimed to investigate the prognostic significance of several baseline variables in stage IIIB-IV non-small cell lung cancer to create a model based on independent prognostic factors.\nMETHODS/RESULTS: A total of 320 patients were treated with last generation chemotherapy regimens. The majority of patients received treatment with cisplatin + gemcitabine or gemcitabine alone if older than 70 years or with an ECOG performance status (PS) = 2. Performance status of 2, squamous histology, number of metastatic sites >2, presence of bone, brain, liver and contralateral lung metastases and elevated leukocyte count in peripheral blood were all statistically significant prognostic factors in univariate analyses whereas the other tested variables (sex, stage, age, presence of adrenal gland and skin metastases) were not. Subsequently, a multivariate Cox's regression analysis identified PS 2 (P < 0.001, hazard ratio 2.57), elevated leukocyte count (P < 0.001, hazard ratio 1.79), squamous histology (P = 0.005, hazard ratio 1.45) and presence of brain metastases (P = 0.035, hazard ratio 1.5) as independent prognostic factors for poor survival. Patients were assigned to one of three risk groups according to the cumulative risk defined as the sum of simplified risk scores of the four independent prognostic factors. Low-, intermediate- and high-risk patients achieved a median survival of 10.2 months (95% confidence interval (CI) 8.9-11.6), 5.1 months (95% CI 4.0-6.2) and 2.8 months (95% CI 0.5-5.2), respectively. The high-risk group encompassed PS 2 patients with two or three adjunctive unfavourable independent prognostic factors.\nCONCLUSIONS: Performance status, white blood cells count, histology and brain metastases resulted in our series prognostic factors of survival in NSCLC patients treated with chemotherapy at a multivariate analysis. Leukocyte count resulted the stronger factor after performance status. If prospectly validated, the proposed prognostic model could be useful to stratify performance status 2 patients in specific future trials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00432-008-0378-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313647", 
        "issn": [
          "0171-5216", 
          "1432-1335"
        ], 
        "name": "Journal of Cancer Research and Clinical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "name": "Baseline elevated leukocyte count in peripheral blood is associated with poor survival in patients with advanced non-small cell lung cancer: a prognostic model", 
    "pagination": "1143-1149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00bdd3d3476d0e6ac8eba673a82f16e7f51f38b238efd9aa251e3cef79620839"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18347812"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7902060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00432-008-0378-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000156056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00432-008-0378-2", 
      "https://app.dimensions.ai/details/publication/pub.1000156056"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00432-008-0378-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00432-008-0378-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00432-008-0378-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00432-008-0378-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00432-008-0378-2'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      56 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00432-008-0378-2 schema:about N14823706085847f5a0fb51c653748378
2 N445dd883eaa94e1f86a6ae32597fa19a
3 Nb288f2632f114791b9f231865f638277
4 Nbfc241084571425f923ca8881fb38544
5 Nc92e7a09b5d4423e84f0592da3dc78dd
6 Nca5959e44d38428794bdd9cd9e161286
7 Nd15aeaa53f3342ba9d4d9393c5093f81
8 Nd45f4f56bc3746bc89885edb488be840
9 Nddd32fc34d3b45f88202d58511ef8b9a
10 Nec7c344e91bb460dbde85297dc97eacf
11 Nfcc7b18438dd46e5817ceb8deeb7f594
12 anzsrc-for:11
13 anzsrc-for:1112
14 schema:author N90a4f5090f904baab220c96f8547e11c
15 schema:citation sg:pub.10.1007/s00432-002-0408-4
16 sg:pub.10.1007/s00432-003-0471-5
17 sg:pub.10.1038/sj.bjc.6600768
18 sg:pub.10.1038/sj.bjc.6602702
19 https://app.dimensions.ai/details/publication/pub.1083269732
20 https://doi.org/10.1002/1097-0142(20011101)92:9<2399::aid-cncr1588>3.0.co;2-w
21 https://doi.org/10.1002/cncr.22049
22 https://doi.org/10.1080/01621459.1958.10501452
23 https://doi.org/10.1200/jco.1995.13.5.1221
24 https://doi.org/10.1200/jco.2002.12.112
25 https://doi.org/10.1200/jco.2003.12.038
26 https://doi.org/10.1200/jco.2004.07.215
27 https://doi.org/10.1200/jco.2004.08.001
28 https://doi.org/10.1200/jco.2004.10.576
29 https://doi.org/10.1200/jco.2005.01.2781
30 https://doi.org/10.3322/canjclin.56.2.106
31 schema:datePublished 2008-10
32 schema:datePublishedReg 2008-10-01
33 schema:description PURPOSE: We aimed to investigate the prognostic significance of several baseline variables in stage IIIB-IV non-small cell lung cancer to create a model based on independent prognostic factors. METHODS/RESULTS: A total of 320 patients were treated with last generation chemotherapy regimens. The majority of patients received treatment with cisplatin + gemcitabine or gemcitabine alone if older than 70 years or with an ECOG performance status (PS) = 2. Performance status of 2, squamous histology, number of metastatic sites >2, presence of bone, brain, liver and contralateral lung metastases and elevated leukocyte count in peripheral blood were all statistically significant prognostic factors in univariate analyses whereas the other tested variables (sex, stage, age, presence of adrenal gland and skin metastases) were not. Subsequently, a multivariate Cox's regression analysis identified PS 2 (P < 0.001, hazard ratio 2.57), elevated leukocyte count (P < 0.001, hazard ratio 1.79), squamous histology (P = 0.005, hazard ratio 1.45) and presence of brain metastases (P = 0.035, hazard ratio 1.5) as independent prognostic factors for poor survival. Patients were assigned to one of three risk groups according to the cumulative risk defined as the sum of simplified risk scores of the four independent prognostic factors. Low-, intermediate- and high-risk patients achieved a median survival of 10.2 months (95% confidence interval (CI) 8.9-11.6), 5.1 months (95% CI 4.0-6.2) and 2.8 months (95% CI 0.5-5.2), respectively. The high-risk group encompassed PS 2 patients with two or three adjunctive unfavourable independent prognostic factors. CONCLUSIONS: Performance status, white blood cells count, histology and brain metastases resulted in our series prognostic factors of survival in NSCLC patients treated with chemotherapy at a multivariate analysis. Leukocyte count resulted the stronger factor after performance status. If prospectly validated, the proposed prognostic model could be useful to stratify performance status 2 patients in specific future trials.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Naea9f6b6b56c40719ff0acb730aa41fc
38 Nebf27e2622924652aa63b263734caf9b
39 sg:journal.1313647
40 schema:name Baseline elevated leukocyte count in peripheral blood is associated with poor survival in patients with advanced non-small cell lung cancer: a prognostic model
41 schema:pagination 1143-1149
42 schema:productId N6bb44ca4968a4014a33e09961f6d9b50
43 N71ea06e64051418bac28f6e006fd9c42
44 N7449d92b3dd34da79502a990fa4183e2
45 N9be5f559b6b64d64ab36a13df1a18b99
46 Nd86b3fe8809948c7a7e4fbc30b690828
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000156056
48 https://doi.org/10.1007/s00432-008-0378-2
49 schema:sdDatePublished 2019-04-11T14:30
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N21a5676289d94320a0eb63bfb1d3c3ff
52 schema:url http://link.springer.com/10.1007%2Fs00432-008-0378-2
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N14823706085847f5a0fb51c653748378 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Aged
58 rdf:type schema:DefinedTerm
59 N166217e4cde24e18ada2bf93970efaa2 rdf:first sg:person.01006230145.44
60 rdf:rest rdf:nil
61 N21a5676289d94320a0eb63bfb1d3c3ff schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N445dd883eaa94e1f86a6ae32597fa19a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Kaplan-Meier Estimate
65 rdf:type schema:DefinedTerm
66 N52de2c67431745aea6e1b9008be69fc9 rdf:first sg:person.0647770505.47
67 rdf:rest N8523f0a8dc254a0c80bcf8a17e7e26f4
68 N596d0230ce6f4d0c92159006a78e763a rdf:first sg:person.01006607213.66
69 rdf:rest N52de2c67431745aea6e1b9008be69fc9
70 N6bb44ca4968a4014a33e09961f6d9b50 schema:name nlm_unique_id
71 schema:value 7902060
72 rdf:type schema:PropertyValue
73 N71ea06e64051418bac28f6e006fd9c42 schema:name doi
74 schema:value 10.1007/s00432-008-0378-2
75 rdf:type schema:PropertyValue
76 N7449d92b3dd34da79502a990fa4183e2 schema:name dimensions_id
77 schema:value pub.1000156056
78 rdf:type schema:PropertyValue
79 N8523f0a8dc254a0c80bcf8a17e7e26f4 rdf:first sg:person.0657517373.98
80 rdf:rest N94b4eb4224d243b0a30deecd9d50e2fe
81 N90a4f5090f904baab220c96f8547e11c rdf:first sg:person.0631427704.49
82 rdf:rest N596d0230ce6f4d0c92159006a78e763a
83 N94b4eb4224d243b0a30deecd9d50e2fe rdf:first sg:person.01210274354.56
84 rdf:rest N166217e4cde24e18ada2bf93970efaa2
85 N9be5f559b6b64d64ab36a13df1a18b99 schema:name pubmed_id
86 schema:value 18347812
87 rdf:type schema:PropertyValue
88 Naea9f6b6b56c40719ff0acb730aa41fc schema:issueNumber 10
89 rdf:type schema:PublicationIssue
90 Nb288f2632f114791b9f231865f638277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Carcinoma, Non-Small-Cell Lung
92 rdf:type schema:DefinedTerm
93 Nbfc241084571425f923ca8881fb38544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Lung Neoplasms
95 rdf:type schema:DefinedTerm
96 Nc92e7a09b5d4423e84f0592da3dc78dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Female
98 rdf:type schema:DefinedTerm
99 Nca5959e44d38428794bdd9cd9e161286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Prognosis
101 rdf:type schema:DefinedTerm
102 Nd15aeaa53f3342ba9d4d9393c5093f81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Leukocyte Count
104 rdf:type schema:DefinedTerm
105 Nd45f4f56bc3746bc89885edb488be840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 Nd86b3fe8809948c7a7e4fbc30b690828 schema:name readcube_id
109 schema:value 00bdd3d3476d0e6ac8eba673a82f16e7f51f38b238efd9aa251e3cef79620839
110 rdf:type schema:PropertyValue
111 Nddd32fc34d3b45f88202d58511ef8b9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Male
113 rdf:type schema:DefinedTerm
114 Nebf27e2622924652aa63b263734caf9b schema:volumeNumber 134
115 rdf:type schema:PublicationVolume
116 Nec7c344e91bb460dbde85297dc97eacf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Antineoplastic Combined Chemotherapy Protocols
118 rdf:type schema:DefinedTerm
119 Nfcc7b18438dd46e5817ceb8deeb7f594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Middle Aged
121 rdf:type schema:DefinedTerm
122 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
123 schema:name Medical and Health Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
126 schema:name Oncology and Carcinogenesis
127 rdf:type schema:DefinedTerm
128 sg:journal.1313647 schema:issn 0171-5216
129 1432-1335
130 schema:name Journal of Cancer Research and Clinical Oncology
131 rdf:type schema:Periodical
132 sg:person.01006230145.44 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
133 schema:familyName Falcone
134 schema:givenName A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006230145.44
136 rdf:type schema:Person
137 sg:person.01006607213.66 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
138 schema:familyName Vasile
139 schema:givenName E.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006607213.66
141 rdf:type schema:Person
142 sg:person.01210274354.56 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
143 schema:familyName Andreuccetti
144 schema:givenName M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210274354.56
146 rdf:type schema:Person
147 sg:person.0631427704.49 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
148 schema:familyName Tibaldi
149 schema:givenName C.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631427704.49
151 rdf:type schema:Person
152 sg:person.0647770505.47 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
153 schema:familyName Bernardini
154 schema:givenName I.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647770505.47
156 rdf:type schema:Person
157 sg:person.0657517373.98 schema:affiliation https://www.grid.ac/institutes/grid.453706.3
158 schema:familyName Orlandini
159 schema:givenName C.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657517373.98
161 rdf:type schema:Person
162 sg:pub.10.1007/s00432-002-0408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075261701
163 https://doi.org/10.1007/s00432-002-0408-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00432-003-0471-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020690373
166 https://doi.org/10.1007/s00432-003-0471-5
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/sj.bjc.6600768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044060493
169 https://doi.org/10.1038/sj.bjc.6600768
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/sj.bjc.6602702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018090440
172 https://doi.org/10.1038/sj.bjc.6602702
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1083269732 schema:CreativeWork
175 https://doi.org/10.1002/1097-0142(20011101)92:9<2399::aid-cncr1588>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1044071451
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/cncr.22049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008958604
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/01621459.1958.10501452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299418
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1200/jco.1995.13.5.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082487053
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1200/jco.2002.12.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203213
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1200/jco.2003.12.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203995
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1200/jco.2004.07.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004496831
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1200/jco.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004142105
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1200/jco.2004.10.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039125504
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1200/jco.2005.01.2781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022755454
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3322/canjclin.56.2.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013642811
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.453706.3 schema:alternateName Tumour Institute of Tuscany
198 schema:name Division of Medical Oncology, Civil Hospital, Viale Alfieri 36, 57100, Livorno, Italy
199 Division of Medical Oncology, Santa Chiara Hospital, Via Roma 67, 56100, Pisa, Italy
200 Istituto Tumori Toscano (ITT), Via Taddeo Alderotti 26/N, 50139, Firenze, Italy
201 University of Pisa, Via Roma 67, 56100, Pisa, Italy
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...