Reconfiguration patterns of large-scale brain networks in motor imagery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Tao Zhang, Fei Wang, Mengchen Li, Fali Li, Ying Tan, Yangsong Zhang, Hang Yang, Bharat Biswal, Dezhong Yao, Peng Xu

ABSTRACT

Motor imagery (MI) is a multidimensional cognitive ability which recruited multiple brain networks. However, how connections and interactions are adjusted among distributed networks during MI remains unknown. To investigate these issues, we analyze the reconfiguration patterns of large-scale networks for different MI states. In our work, we explored the specific patterns of large-scale functional network organization from rest to different MI tasks using group independent component analysis (ICA), and evaluated the potential relationships between MI and the patterns of large-scale networks. The results indicate that task-related large-scale networks show the balanced relation between the within- and between-network connectivities during MI, and reveal the somatomotor network and dorsal attention network play critical roles in switching context-specific MI, and also demonstrate the change of large-scale networks organization toward effective topology could facilitate MI performance. Moreover, based on the large-scale network connectivities, we could differentiate an individual's three states (i.e., left-hand MI, right-hand MI and rest) with an 72.73% accuracy using a multi-variant pattern analysis, suggesting that the specific patterns of large-scale network can also provide potential biomarkers to predict an individual's behavior. Our findings contribute to the further understanding of the neural mechanisms underlying MI from large-scale network patterns and provide new biomarkers to predict the individual's behaviors. More... »

PAGES

553-566

References to SciGraph publications

  • 2016-01. A neuromarker of sustained attention from whole-brain functional connectivity in NATURE NEUROSCIENCE
  • 2016-08. A multi-modal parcellation of human cerebral cortex in NATURE
  • 2017-09. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2016-01. Optimization of a motor learning attention-directing strategy based on an individual’s motor imagery ability in EXPERIMENTAL BRAIN RESEARCH
  • 2006-07. Neuronal ensemble control of prosthetic devices by a human with tetraplegia in NATURE
  • 2013-09. Multi-task connectivity reveals flexible hubs for adaptive task control in NATURE NEUROSCIENCE
  • 2015-07. Rethinking segregation and integration: contributions of whole-brain modelling in NATURE REVIEWS NEUROSCIENCE
  • 2016-09. Brain-computer interfaces for communication and rehabilitation in NATURE REVIEWS NEUROLOGY
  • 2018-10. A new parameter tuning approach for enhanced motor imagery EEG signal classification in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2017-03. Building better biomarkers: brain models in translational neuroimaging in NATURE NEUROSCIENCE
  • 2014-05. Contributions and challenges for network models in cognitive neuroscience in NATURE NEUROSCIENCE
  • 2002-03. Control of goal-directed and stimulus-driven attention in the brain in NATURE REVIEWS NEUROSCIENCE
  • 2012-08. Motor imagery and higher-level cognition: four hurdles before research can sprint forward in COGNITIVE PROCESSING
  • 2016-12. Integration and segregation of large-scale brain networks during short-term task automatization in NATURE COMMUNICATIONS
  • 2015-01. Multivariate classification of social anxiety disorder using whole brain functional connectivity in BRAIN STRUCTURE AND FUNCTION
  • 2016-01. Linking cognition to brain connectivity in NATURE NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00429-018-1786-y

    DOI

    http://dx.doi.org/10.1007/s00429-018-1786-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109831430

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30421036


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xihua University", 
              "id": "https://www.grid.ac/institutes/grid.412983.5", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China", 
                "Xihua University, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Tao", 
            "id": "sg:person.013355433251.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013355433251.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Fei", 
            "id": "sg:person.01035643331.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035643331.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Mengchen", 
            "id": "sg:person.07672020101.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07672020101.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Fali", 
            "id": "sg:person.0706234455.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706234455.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Ying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southwest University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.440649.b", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China", 
                "School of Computer Science and Technology, Southwest University of Science and Technology, 621010, Mianyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yangsong", 
            "id": "sg:person.01146555311.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146555311.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Hang", 
            "id": "sg:person.013260723020.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260723020.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New Jersey Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.260896.3", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China", 
                "Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biswal", 
            "givenName": "Bharat", 
            "id": "sg:person.01300046647.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300046647.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China", 
                "Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Dezhong", 
            "id": "sg:person.0722677507.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722677507.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Electronic Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China", 
                "Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Peng", 
            "id": "sg:person.01030505001.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030505001.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nn.4206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000408596", 
              "https://doi.org/10.1038/nn.4206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.20581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000819803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2016.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004712521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2016.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004712521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0358-16.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005585446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1002328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006037864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007014462", 
              "https://doi.org/10.1038/nn.3690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00429-013-0641-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007408616", 
              "https://doi.org/10.1007/s00429-013-0641-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007795162", 
              "https://doi.org/10.1038/nature04970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007795162", 
              "https://doi.org/10.1038/nature04970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007795162", 
              "https://doi.org/10.1038/nature04970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conb.2007.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010047625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-neuro-062111-150525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010488845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.2733-15.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011488674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neubiorev.2013.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017004394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/wnr.0000000000000307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019905003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/wnr.0000000000000307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019905003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/cercor/bhu012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022026652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.03.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022216745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa5417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023802344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0905267106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024106054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tics.2011.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025598003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conb.2016.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027837598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601417103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029386022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/cercor/10.11.1093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029781304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10339-012-0438-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030727988", 
              "https://doi.org/10.1007/s10339-012-0438-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/cercor/bhh086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030949646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.01.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030975267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogbrainres.2005.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031591170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogbrainres.2005.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031591170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2016.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031901510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2016.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032584477", 
              "https://doi.org/10.1038/nrneurol.2016.113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033286434", 
              "https://doi.org/10.1038/ncomms13217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033286434", 
              "https://doi.org/10.1038/ncomms13217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1941487.1941506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033660995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00221-015-4464-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034770579", 
              "https://doi.org/10.1007/s00221-015-4464-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3923/jbs.2016.265.271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034915163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2008.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035650411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp1606181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037685942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2015.03.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037852387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.24390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037903408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2008.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038325052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039392616", 
              "https://doi.org/10.1038/nn.3470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-4328(95)00225-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039400274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1194144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039727780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2007.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040550843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.22118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041339785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rstb.2013.0526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041452569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad8127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041697908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985126", 
              "https://doi.org/10.1038/nrn755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985126", 
              "https://doi.org/10.1038/nrn755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.22670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042060379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042292956", 
              "https://doi.org/10.1038/nature18933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.1024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043711872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2006.04.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044444317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0902455106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044539623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2008.10.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044765461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2014.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044950312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aac7992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045719935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2044-8295.2011.02068.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046338637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0911855107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046698010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046974162", 
              "https://doi.org/10.1038/nn.4179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046974162", 
              "https://doi.org/10.1038/nn.4179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.2965-15.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047076668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2016.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047162929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tics.2010.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047472356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0700668104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047695691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.2722-10.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047913138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0913697107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050311283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2015.09.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050743679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2015.2469106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051365954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2011.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052220614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn3963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052547486", 
              "https://doi.org/10.1038/nrn3963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2016.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053170467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2010.2055564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061528080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2011.2167718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061528563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2012.2197221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2010.2055859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061802302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129065716500325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062899504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-017-1622-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083536619", 
              "https://doi.org/10.1007/s11517-017-1622-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-017-1622-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083536619", 
              "https://doi.org/10.1007/s11517-017-1622-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083860816", 
              "https://doi.org/10.1038/nn.4478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2017.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092338905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2014.6853966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094428831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-018-1821-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103150261", 
              "https://doi.org/10.1007/s11517-018-1821-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-018-1821-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103150261", 
              "https://doi.org/10.1007/s11517-018-1821-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Motor imagery (MI) is a multidimensional cognitive ability which recruited multiple brain networks. However, how connections and interactions are adjusted among distributed networks during MI remains unknown. To investigate these issues, we analyze the reconfiguration patterns of large-scale networks for different MI states. In our work, we explored the specific patterns of large-scale functional network organization from rest to different MI tasks using group independent component analysis (ICA), and evaluated the potential relationships between MI and the patterns of large-scale networks. The results indicate that task-related large-scale networks show the balanced relation between the within- and between-network connectivities during MI, and reveal the somatomotor network and dorsal attention network play critical roles in switching context-specific MI, and also demonstrate the change of large-scale networks organization toward effective topology could facilitate MI performance. Moreover, based on the large-scale network connectivities, we could differentiate an individual's three states (i.e., left-hand MI, right-hand MI and rest) with an 72.73% accuracy using a multi-variant pattern analysis, suggesting that the specific patterns of large-scale network can also provide potential biomarkers to predict an individual's behavior. Our findings contribute to the further understanding of the neural mechanisms underlying MI from large-scale network patterns and provide new biomarkers to predict the individual's behaviors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00429-018-1786-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1056924", 
            "issn": [
              "1863-2653", 
              "1863-2661"
            ], 
            "name": "Brain Structure and Function", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "224"
          }
        ], 
        "name": "Reconfiguration patterns of large-scale brain networks in motor imagery", 
        "pagination": "553-566", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0400731513b07f66529626b41ca1c86e521339a6efab96da39f948d83af8d1bd"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30421036"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101282001"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00429-018-1786-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109831430"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00429-018-1786-y", 
          "https://app.dimensions.ai/details/publication/pub.1109831430"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00429-018-1786-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00429-018-1786-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00429-018-1786-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00429-018-1786-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00429-018-1786-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    391 TRIPLES      21 PREDICATES      106 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00429-018-1786-y schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Ne77bf82420bf40b99800c73fcb993a37
    4 schema:citation sg:pub.10.1007/s00221-015-4464-9
    5 sg:pub.10.1007/s00429-013-0641-4
    6 sg:pub.10.1007/s10339-012-0438-z
    7 sg:pub.10.1007/s11517-017-1622-1
    8 sg:pub.10.1007/s11517-018-1821-4
    9 sg:pub.10.1038/nature04970
    10 sg:pub.10.1038/nature18933
    11 sg:pub.10.1038/ncomms13217
    12 sg:pub.10.1038/nn.3470
    13 sg:pub.10.1038/nn.3690
    14 sg:pub.10.1038/nn.4179
    15 sg:pub.10.1038/nn.4206
    16 sg:pub.10.1038/nn.4478
    17 sg:pub.10.1038/nrn3963
    18 sg:pub.10.1038/nrn755
    19 sg:pub.10.1038/nrneurol.2016.113
    20 https://doi.org/10.1002/ana.24390
    21 https://doi.org/10.1002/hbm.1024
    22 https://doi.org/10.1002/hbm.20581
    23 https://doi.org/10.1002/hbm.22118
    24 https://doi.org/10.1002/hbm.22670
    25 https://doi.org/10.1016/0166-4328(95)00225-1
    26 https://doi.org/10.1016/j.celrep.2016.10.002
    27 https://doi.org/10.1016/j.cogbrainres.2005.08.014
    28 https://doi.org/10.1016/j.compbiomed.2017.10.025
    29 https://doi.org/10.1016/j.conb.2007.02.003
    30 https://doi.org/10.1016/j.conb.2016.06.014
    31 https://doi.org/10.1016/j.eswa.2008.01.009
    32 https://doi.org/10.1016/j.jneumeth.2016.03.012
    33 https://doi.org/10.1016/j.neubiorev.2013.03.017
    34 https://doi.org/10.1016/j.neuroimage.2007.11.001
    35 https://doi.org/10.1016/j.neuroimage.2008.08.019
    36 https://doi.org/10.1016/j.neuroimage.2008.10.057
    37 https://doi.org/10.1016/j.neuroimage.2010.03.022
    38 https://doi.org/10.1016/j.neuroimage.2011.01.021
    39 https://doi.org/10.1016/j.neuroimage.2016.04.030
    40 https://doi.org/10.1016/j.neuron.2011.09.006
    41 https://doi.org/10.1016/j.neuron.2014.05.014
    42 https://doi.org/10.1016/j.neuron.2015.03.036
    43 https://doi.org/10.1016/j.neuron.2015.09.027
    44 https://doi.org/10.1016/j.neuron.2016.09.018
    45 https://doi.org/10.1016/j.patcog.2006.04.021
    46 https://doi.org/10.1016/j.tics.2010.04.004
    47 https://doi.org/10.1016/j.tics.2011.08.003
    48 https://doi.org/10.1056/nejmp1606181
    49 https://doi.org/10.1073/pnas.0601417103
    50 https://doi.org/10.1073/pnas.0700668104
    51 https://doi.org/10.1073/pnas.0902455106
    52 https://doi.org/10.1073/pnas.0905267106
    53 https://doi.org/10.1073/pnas.0911855107
    54 https://doi.org/10.1073/pnas.0913697107
    55 https://doi.org/10.1093/cercor/10.11.1093
    56 https://doi.org/10.1093/cercor/bhh086
    57 https://doi.org/10.1093/cercor/bhu012
    58 https://doi.org/10.1097/wnr.0000000000000307
    59 https://doi.org/10.1098/rstb.2013.0526
    60 https://doi.org/10.1109/icassp.2014.6853966
    61 https://doi.org/10.1109/jproc.2015.2469106
    62 https://doi.org/10.1109/tbme.2010.2055564
    63 https://doi.org/10.1109/tbme.2011.2167718
    64 https://doi.org/10.1109/tnsre.2012.2197221
    65 https://doi.org/10.1109/tsp.2010.2055859
    66 https://doi.org/10.1111/j.2044-8295.2011.02068.x
    67 https://doi.org/10.1126/science.1194144
    68 https://doi.org/10.1126/science.aaa5417
    69 https://doi.org/10.1126/science.aac7992
    70 https://doi.org/10.1126/science.aad8127
    71 https://doi.org/10.1142/s0129065716500325
    72 https://doi.org/10.1145/1941487.1941506
    73 https://doi.org/10.1145/1961189.1961199
    74 https://doi.org/10.1146/annurev-neuro-062111-150525
    75 https://doi.org/10.1371/journal.pbio.1002328
    76 https://doi.org/10.1523/jneurosci.0358-16.2016
    77 https://doi.org/10.1523/jneurosci.2722-10.2010
    78 https://doi.org/10.1523/jneurosci.2733-15.2016
    79 https://doi.org/10.1523/jneurosci.2965-15.2016
    80 https://doi.org/10.3923/jbs.2016.265.271
    81 schema:datePublished 2019-03
    82 schema:datePublishedReg 2019-03-01
    83 schema:description Motor imagery (MI) is a multidimensional cognitive ability which recruited multiple brain networks. However, how connections and interactions are adjusted among distributed networks during MI remains unknown. To investigate these issues, we analyze the reconfiguration patterns of large-scale networks for different MI states. In our work, we explored the specific patterns of large-scale functional network organization from rest to different MI tasks using group independent component analysis (ICA), and evaluated the potential relationships between MI and the patterns of large-scale networks. The results indicate that task-related large-scale networks show the balanced relation between the within- and between-network connectivities during MI, and reveal the somatomotor network and dorsal attention network play critical roles in switching context-specific MI, and also demonstrate the change of large-scale networks organization toward effective topology could facilitate MI performance. Moreover, based on the large-scale network connectivities, we could differentiate an individual's three states (i.e., left-hand MI, right-hand MI and rest) with an 72.73% accuracy using a multi-variant pattern analysis, suggesting that the specific patterns of large-scale network can also provide potential biomarkers to predict an individual's behavior. Our findings contribute to the further understanding of the neural mechanisms underlying MI from large-scale network patterns and provide new biomarkers to predict the individual's behaviors.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree false
    87 schema:isPartOf N166968a7c2dc488c90c8bec271d34e3d
    88 N2154d8806d544b0b92aa750179662af0
    89 sg:journal.1056924
    90 schema:name Reconfiguration patterns of large-scale brain networks in motor imagery
    91 schema:pagination 553-566
    92 schema:productId N1bf60c87c98d4fa68887773ac648b487
    93 N410f33a3eaf64370b29a3199513ad67c
    94 N438117c287e04eaeb1cd6770addd3389
    95 N9e40b491f78848c98b770ce3157b1071
    96 Nd104bb792b3948b6aefb105074182e17
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109831430
    98 https://doi.org/10.1007/s00429-018-1786-y
    99 schema:sdDatePublished 2019-04-11T11:54
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N2afb4b006a8041b8896c24f1a26b7971
    102 schema:url https://link.springer.com/10.1007%2Fs00429-018-1786-y
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N166968a7c2dc488c90c8bec271d34e3d schema:volumeNumber 224
    107 rdf:type schema:PublicationVolume
    108 N1bf60c87c98d4fa68887773ac648b487 schema:name doi
    109 schema:value 10.1007/s00429-018-1786-y
    110 rdf:type schema:PropertyValue
    111 N2154d8806d544b0b92aa750179662af0 schema:issueNumber 2
    112 rdf:type schema:PublicationIssue
    113 N2afb4b006a8041b8896c24f1a26b7971 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N34aaa199fb4246918db2ab9a422b44ff rdf:first sg:person.01035643331.32
    116 rdf:rest N98093456c7a44605b0fb0d2ea0d963d9
    117 N410f33a3eaf64370b29a3199513ad67c schema:name nlm_unique_id
    118 schema:value 101282001
    119 rdf:type schema:PropertyValue
    120 N438117c287e04eaeb1cd6770addd3389 schema:name readcube_id
    121 schema:value 0400731513b07f66529626b41ca1c86e521339a6efab96da39f948d83af8d1bd
    122 rdf:type schema:PropertyValue
    123 N7e3aa7fe21d3432e9cc8783b2771b553 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    124 schema:familyName Tan
    125 schema:givenName Ying
    126 rdf:type schema:Person
    127 N88c5a30739d34e8b92201fd1c643e4da rdf:first sg:person.01300046647.03
    128 rdf:rest Ne5c32dae3cdf4a53a131c9695ab531d0
    129 N8a2e3b1a272c42e8947e8be01fbe9ec7 rdf:first sg:person.0706234455.96
    130 rdf:rest Ne7fd5b23ee89493da9371dc09a19debb
    131 N98093456c7a44605b0fb0d2ea0d963d9 rdf:first sg:person.07672020101.46
    132 rdf:rest N8a2e3b1a272c42e8947e8be01fbe9ec7
    133 N9e40b491f78848c98b770ce3157b1071 schema:name dimensions_id
    134 schema:value pub.1109831430
    135 rdf:type schema:PropertyValue
    136 Nb42bdf68e52741edab541cb6c9a432aa rdf:first sg:person.013260723020.20
    137 rdf:rest N88c5a30739d34e8b92201fd1c643e4da
    138 Nbcf04bed25b24161b510dcce088840b3 rdf:first sg:person.01030505001.04
    139 rdf:rest rdf:nil
    140 Nd104bb792b3948b6aefb105074182e17 schema:name pubmed_id
    141 schema:value 30421036
    142 rdf:type schema:PropertyValue
    143 Ndccc4bb561b940d594c087948645307c rdf:first sg:person.01146555311.37
    144 rdf:rest Nb42bdf68e52741edab541cb6c9a432aa
    145 Ne5c32dae3cdf4a53a131c9695ab531d0 rdf:first sg:person.0722677507.40
    146 rdf:rest Nbcf04bed25b24161b510dcce088840b3
    147 Ne77bf82420bf40b99800c73fcb993a37 rdf:first sg:person.013355433251.02
    148 rdf:rest N34aaa199fb4246918db2ab9a422b44ff
    149 Ne7fd5b23ee89493da9371dc09a19debb rdf:first N7e3aa7fe21d3432e9cc8783b2771b553
    150 rdf:rest Ndccc4bb561b940d594c087948645307c
    151 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Psychology and Cognitive Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Psychology
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1056924 schema:issn 1863-2653
    158 1863-2661
    159 schema:name Brain Structure and Function
    160 rdf:type schema:Periodical
    161 sg:person.01030505001.04 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    162 schema:familyName Xu
    163 schema:givenName Peng
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030505001.04
    165 rdf:type schema:Person
    166 sg:person.01035643331.32 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    167 schema:familyName Wang
    168 schema:givenName Fei
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035643331.32
    170 rdf:type schema:Person
    171 sg:person.01146555311.37 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
    172 schema:familyName Zhang
    173 schema:givenName Yangsong
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146555311.37
    175 rdf:type schema:Person
    176 sg:person.01300046647.03 schema:affiliation https://www.grid.ac/institutes/grid.260896.3
    177 schema:familyName Biswal
    178 schema:givenName Bharat
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300046647.03
    180 rdf:type schema:Person
    181 sg:person.013260723020.20 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    182 schema:familyName Yang
    183 schema:givenName Hang
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260723020.20
    185 rdf:type schema:Person
    186 sg:person.013355433251.02 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
    187 schema:familyName Zhang
    188 schema:givenName Tao
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013355433251.02
    190 rdf:type schema:Person
    191 sg:person.0706234455.96 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    192 schema:familyName Li
    193 schema:givenName Fali
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706234455.96
    195 rdf:type schema:Person
    196 sg:person.0722677507.40 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    197 schema:familyName Yao
    198 schema:givenName Dezhong
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722677507.40
    200 rdf:type schema:Person
    201 sg:person.07672020101.46 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
    202 schema:familyName Li
    203 schema:givenName Mengchen
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07672020101.46
    205 rdf:type schema:Person
    206 sg:pub.10.1007/s00221-015-4464-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770579
    207 https://doi.org/10.1007/s00221-015-4464-9
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00429-013-0641-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007408616
    210 https://doi.org/10.1007/s00429-013-0641-4
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s10339-012-0438-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030727988
    213 https://doi.org/10.1007/s10339-012-0438-z
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11517-017-1622-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083536619
    216 https://doi.org/10.1007/s11517-017-1622-1
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s11517-018-1821-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103150261
    219 https://doi.org/10.1007/s11517-018-1821-4
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature04970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007795162
    222 https://doi.org/10.1038/nature04970
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature18933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042292956
    225 https://doi.org/10.1038/nature18933
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ncomms13217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033286434
    228 https://doi.org/10.1038/ncomms13217
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nn.3470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039392616
    231 https://doi.org/10.1038/nn.3470
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nn.3690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014462
    234 https://doi.org/10.1038/nn.3690
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nn.4179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046974162
    237 https://doi.org/10.1038/nn.4179
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nn.4206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000408596
    240 https://doi.org/10.1038/nn.4206
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nn.4478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860816
    243 https://doi.org/10.1038/nn.4478
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nrn3963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052547486
    246 https://doi.org/10.1038/nrn3963
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrn755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985126
    249 https://doi.org/10.1038/nrn755
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrneurol.2016.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032584477
    252 https://doi.org/10.1038/nrneurol.2016.113
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1002/ana.24390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037903408
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1002/hbm.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043711872
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1002/hbm.20581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819803
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1002/hbm.22118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041339785
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1002/hbm.22670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042060379
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/0166-4328(95)00225-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039400274
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/j.celrep.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004712521
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.cogbrainres.2005.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031591170
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1016/j.compbiomed.2017.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092338905
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1016/j.conb.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010047625
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1016/j.conb.2016.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027837598
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1016/j.eswa.2008.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035650411
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1016/j.jneumeth.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170467
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1016/j.neubiorev.2013.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017004394
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1016/j.neuroimage.2007.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040550843
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1016/j.neuroimage.2008.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038325052
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1016/j.neuroimage.2008.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044765461
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1016/j.neuroimage.2010.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022216745
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1016/j.neuroimage.2011.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030975267
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1016/j.neuroimage.2016.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031901510
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1016/j.neuron.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220614
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1016/j.neuron.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044950312
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1016/j.neuron.2015.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852387
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1016/j.neuron.2015.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050743679
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1016/j.neuron.2016.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047162929
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1016/j.patcog.2006.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444317
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1016/j.tics.2010.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047472356
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1016/j.tics.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025598003
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1056/nejmp1606181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037685942
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1073/pnas.0601417103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386022
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1073/pnas.0700668104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047695691
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1073/pnas.0902455106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044539623
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1073/pnas.0905267106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024106054
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1073/pnas.0911855107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046698010
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1073/pnas.0913697107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050311283
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1093/cercor/10.11.1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029781304
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1093/cercor/bhh086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030949646
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1093/cercor/bhu012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022026652
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1097/wnr.0000000000000307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019905003
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1098/rstb.2013.0526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041452569
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1109/icassp.2014.6853966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094428831
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1109/jproc.2015.2469106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051365954
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1109/tbme.2010.2055564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528080
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1109/tbme.2011.2167718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528563
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1109/tnsre.2012.2197221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740625
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1109/tsp.2010.2055859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802302
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1111/j.2044-8295.2011.02068.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046338637
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1126/science.1194144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039727780
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1126/science.aaa5417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023802344
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1126/science.aac7992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045719935
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1126/science.aad8127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041697908
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1142/s0129065716500325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899504
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1145/1941487.1941506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033660995
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1146/annurev-neuro-062111-150525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010488845
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1371/journal.pbio.1002328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006037864
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1523/jneurosci.0358-16.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005585446
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1523/jneurosci.2722-10.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913138
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1523/jneurosci.2733-15.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011488674
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1523/jneurosci.2965-15.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047076668
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.3923/jbs.2016.265.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034915163
    375 rdf:type schema:CreativeWork
    376 https://www.grid.ac/institutes/grid.260896.3 schema:alternateName New Jersey Institute of Technology
    377 schema:name Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
    378 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China
    379 rdf:type schema:Organization
    380 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
    381 schema:name MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China
    382 Xihua University, Chengdu, China
    383 rdf:type schema:Organization
    384 https://www.grid.ac/institutes/grid.440649.b schema:alternateName Southwest University of Science and Technology
    385 schema:name MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China
    386 School of Computer Science and Technology, Southwest University of Science and Technology, 621010, Mianyang, China
    387 rdf:type schema:Organization
    388 https://www.grid.ac/institutes/grid.54549.39 schema:alternateName University of Electronic Science and Technology of China
    389 schema:name Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
    390 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, #4, Section 2 of North Jianshe Road, 610054, Chengdu, Sichuan, China
    391 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...