Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer’s disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-01

AUTHORS

Zhiqun Wang, Mingrui Xia, Zhengjia Dai, Xia Liang, Haiqing Song, Yong He, Kuncheng Li

ABSTRACT

Recent research on Alzheimer’s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD. More... »

PAGES

745-762

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9

DOI

http://dx.doi.org/10.1007/s00429-013-0681-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035726550

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24292325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuropsychological Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parietal Lobe", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhiqun", 
        "id": "sg:person.0604063415.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604063415.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Mingrui", 
        "id": "sg:person.01114206503.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114206503.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Zhengjia", 
        "id": "sg:person.01076052402.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076052402.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Xia", 
        "id": "sg:person.0676124607.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676124607.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Haiqing", 
        "id": "sg:person.01212301002.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212301002.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yong", 
        "id": "sg:person.013260143277.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
            "Key Laboratory for Neurodegenerative Diseases, Capital Medical University, Ministry of Education, 100069, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002210050838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004043636", 
          "https://doi.org/10.1007/s002210050838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-008-0195-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001715947", 
          "https://doi.org/10.1007/s00429-008-0195-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003249781", 
          "https://doi.org/10.1038/nrn2776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00213-004-2077-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005640740", 
          "https://doi.org/10.1007/s00213-004-2077-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneurol.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053231189", 
          "https://doi.org/10.1038/nrneurol.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355620", 
          "https://doi.org/10.1007/bf00308809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12-01", 
    "datePublishedReg": "2013-12-01", 
    "description": "Recent research on Alzheimer\u2019s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00429-013-0681-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1056924", 
        "issn": [
          "1863-2653", 
          "1863-2661"
        ], 
        "name": "Brain Structure and Function", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "220"
      }
    ], 
    "keywords": [
      "inferior parietal lobule", 
      "distinct functional connectivity patterns", 
      "default mode network", 
      "AD patients", 
      "Alzheimer's disease", 
      "functional connectivity patterns", 
      "functional connectivity", 
      "executive control network", 
      "sensorimotor network", 
      "whole-brain resting-state functional connectivity", 
      "salience network", 
      "parietal lobule", 
      "resting-state functional connectivity", 
      "posterior inferior parietal lobule", 
      "resting-state functional magnetic resonance", 
      "anterior inferior parietal lobule", 
      "functional connectivity changes", 
      "functional magnetic resonance", 
      "connectivity patterns", 
      "healthy controls", 
      "functional disconnection", 
      "AD subjects", 
      "patients", 
      "compensatory mechanisms", 
      "connectivity changes", 
      "disease", 
      "posterior part", 
      "cognitive performance", 
      "lobule", 
      "functional networks", 
      "magnetic resonance", 
      "altered structure", 
      "promising indicator", 
      "subregions", 
      "impairment", 
      "functional integration", 
      "control", 
      "subjects", 
      "patterns", 
      "recent research", 
      "connectivity", 
      "study", 
      "disruptive patterns", 
      "changes", 
      "mechanism", 
      "indicators", 
      "function", 
      "disconnection", 
      "data", 
      "analysis", 
      "results", 
      "part", 
      "research", 
      "resonance", 
      "atlases", 
      "connection", 
      "compensation", 
      "network", 
      "integration", 
      "performance", 
      "structure", 
      "different networks"
    ], 
    "name": "Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer\u2019s disease", 
    "pagination": "745-762", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035726550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00429-013-0681-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24292325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00429-013-0681-9", 
      "https://app.dimensions.ai/details/publication/pub.1035726550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_600.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00429-013-0681-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      108 URIs      94 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00429-013-0681-9 schema:about N0b337bc5915b4bea8f86a87fb7df3990
2 N30fc6ea6f72c409f980f199597ae039c
3 N37fba0565a5a4df8a425c967fff7e4c0
4 N3d85cc124c0b4410a9ea13ca8e8108b2
5 N48c581402bd44d569883215af9dbd755
6 N6ca75fce15144ae0823f2b10882ab757
7 N7e16b271e246475984cd4ee638722931
8 N8454e6c68c1c4de580d4d9189b9ff510
9 N91c48d40e73a4363b1fd9d87ce43cf26
10 Na79e3faeea8049cf9a1ffe0ec53674d1
11 Nd19d893d9b7b4797a4eb44464dcd85b7
12 Ndf5d5212e8d94c68bcf8222282b0963c
13 Ndfd9757743bd41d08abae56e874ac422
14 Nf2a1175e024a410fac689b74262a9c3a
15 Nfac4aac104c9406f8e4bf26d90021fc2
16 anzsrc-for:11
17 anzsrc-for:1109
18 schema:author N998220a6f1c44ea0b228cf10ce40ebaa
19 schema:citation sg:pub.10.1007/bf00308809
20 sg:pub.10.1007/s00213-004-2077-2
21 sg:pub.10.1007/s002210050838
22 sg:pub.10.1007/s00429-008-0195-z
23 sg:pub.10.1038/nrn2776
24 sg:pub.10.1038/nrneurol.2009.198
25 schema:datePublished 2013-12-01
26 schema:datePublishedReg 2013-12-01
27 schema:description Recent research on Alzheimer’s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N9a7919bff26e4aa6aa0f6725517d5924
31 Ndb26843119a8464e8c9d30395dec0cb2
32 sg:journal.1056924
33 schema:keywords AD patients
34 AD subjects
35 Alzheimer's disease
36 altered structure
37 analysis
38 anterior inferior parietal lobule
39 atlases
40 changes
41 cognitive performance
42 compensation
43 compensatory mechanisms
44 connection
45 connectivity
46 connectivity changes
47 connectivity patterns
48 control
49 data
50 default mode network
51 different networks
52 disconnection
53 disease
54 disruptive patterns
55 distinct functional connectivity patterns
56 executive control network
57 function
58 functional connectivity
59 functional connectivity changes
60 functional connectivity patterns
61 functional disconnection
62 functional integration
63 functional magnetic resonance
64 functional networks
65 healthy controls
66 impairment
67 indicators
68 inferior parietal lobule
69 integration
70 lobule
71 magnetic resonance
72 mechanism
73 network
74 parietal lobule
75 part
76 patients
77 patterns
78 performance
79 posterior inferior parietal lobule
80 posterior part
81 promising indicator
82 recent research
83 research
84 resonance
85 resting-state functional connectivity
86 resting-state functional magnetic resonance
87 results
88 salience network
89 sensorimotor network
90 structure
91 study
92 subjects
93 subregions
94 whole-brain resting-state functional connectivity
95 schema:name Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer’s disease
96 schema:pagination 745-762
97 schema:productId N0e85f38c56254464948d2f575762bdf1
98 N2ab19bc8e461469496fe232c433b750c
99 N2d24293e58d94eae9e61fcefdf877805
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035726550
101 https://doi.org/10.1007/s00429-013-0681-9
102 schema:sdDatePublished 2022-12-01T06:31
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N1f82cbe51b1b43dcb51577f9c756a553
105 schema:url https://doi.org/10.1007/s00429-013-0681-9
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0b337bc5915b4bea8f86a87fb7df3990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aged
111 rdf:type schema:DefinedTerm
112 N0e85f38c56254464948d2f575762bdf1 schema:name dimensions_id
113 schema:value pub.1035726550
114 rdf:type schema:PropertyValue
115 N17c43e9efc2b4257954a3f5d393253eb rdf:first sg:person.01076052402.29
116 rdf:rest N8f4554fb687748b88c5962fd829139a8
117 N1f82cbe51b1b43dcb51577f9c756a553 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N2ab19bc8e461469496fe232c433b750c schema:name pubmed_id
120 schema:value 24292325
121 rdf:type schema:PropertyValue
122 N2d24293e58d94eae9e61fcefdf877805 schema:name doi
123 schema:value 10.1007/s00429-013-0681-9
124 rdf:type schema:PropertyValue
125 N30fc6ea6f72c409f980f199597ae039c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Brain Mapping
127 rdf:type schema:DefinedTerm
128 N37fba0565a5a4df8a425c967fff7e4c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 N3d85cc124c0b4410a9ea13ca8e8108b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Parietal Lobe
133 rdf:type schema:DefinedTerm
134 N48c581402bd44d569883215af9dbd755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Middle Aged
136 rdf:type schema:DefinedTerm
137 N5c0aa74160dc4e6c966958a7d8aa1fc3 rdf:first sg:person.01212301002.73
138 rdf:rest N8b0e4cd249064af6b4bc5023b3f24a0c
139 N6ca75fce15144ae0823f2b10882ab757 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Aged, 80 and over
141 rdf:type schema:DefinedTerm
142 N7e16b271e246475984cd4ee638722931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Nerve Net
144 rdf:type schema:DefinedTerm
145 N8454e6c68c1c4de580d4d9189b9ff510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Neural Pathways
147 rdf:type schema:DefinedTerm
148 N8b0e4cd249064af6b4bc5023b3f24a0c rdf:first sg:person.013260143277.53
149 rdf:rest N8ed00ae78fa24749aaa130d2c94bb7e7
150 N8ed00ae78fa24749aaa130d2c94bb7e7 rdf:first sg:person.01326527402.59
151 rdf:rest rdf:nil
152 N8f4554fb687748b88c5962fd829139a8 rdf:first sg:person.0676124607.37
153 rdf:rest N5c0aa74160dc4e6c966958a7d8aa1fc3
154 N91c48d40e73a4363b1fd9d87ce43cf26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Humans
156 rdf:type schema:DefinedTerm
157 N998220a6f1c44ea0b228cf10ce40ebaa rdf:first sg:person.0604063415.90
158 rdf:rest Ne70772a17b674b14a06efed1feebbb21
159 N9a7919bff26e4aa6aa0f6725517d5924 schema:volumeNumber 220
160 rdf:type schema:PublicationVolume
161 Na79e3faeea8049cf9a1ffe0ec53674d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Magnetic Resonance Imaging
163 rdf:type schema:DefinedTerm
164 Nd19d893d9b7b4797a4eb44464dcd85b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Neuropsychological Tests
166 rdf:type schema:DefinedTerm
167 Ndb26843119a8464e8c9d30395dec0cb2 schema:issueNumber 2
168 rdf:type schema:PublicationIssue
169 Ndf5d5212e8d94c68bcf8222282b0963c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Alzheimer Disease
171 rdf:type schema:DefinedTerm
172 Ndfd9757743bd41d08abae56e874ac422 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Brain
174 rdf:type schema:DefinedTerm
175 Ne70772a17b674b14a06efed1feebbb21 rdf:first sg:person.01114206503.03
176 rdf:rest N17c43e9efc2b4257954a3f5d393253eb
177 Nf2a1175e024a410fac689b74262a9c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Female
179 rdf:type schema:DefinedTerm
180 Nfac4aac104c9406f8e4bf26d90021fc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Cluster Analysis
182 rdf:type schema:DefinedTerm
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
187 schema:name Neurosciences
188 rdf:type schema:DefinedTerm
189 sg:journal.1056924 schema:issn 1863-2653
190 1863-2661
191 schema:name Brain Structure and Function
192 schema:publisher Springer Nature
193 rdf:type schema:Periodical
194 sg:person.01076052402.29 schema:affiliation grid-institutes:grid.20513.35
195 schema:familyName Dai
196 schema:givenName Zhengjia
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076052402.29
198 rdf:type schema:Person
199 sg:person.01114206503.03 schema:affiliation grid-institutes:grid.20513.35
200 schema:familyName Xia
201 schema:givenName Mingrui
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114206503.03
203 rdf:type schema:Person
204 sg:person.01212301002.73 schema:affiliation grid-institutes:grid.413259.8
205 schema:familyName Song
206 schema:givenName Haiqing
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212301002.73
208 rdf:type schema:Person
209 sg:person.013260143277.53 schema:affiliation grid-institutes:grid.20513.35
210 schema:familyName He
211 schema:givenName Yong
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53
213 rdf:type schema:Person
214 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
215 schema:familyName Li
216 schema:givenName Kuncheng
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
218 rdf:type schema:Person
219 sg:person.0604063415.90 schema:affiliation grid-institutes:grid.413259.8
220 schema:familyName Wang
221 schema:givenName Zhiqun
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604063415.90
223 rdf:type schema:Person
224 sg:person.0676124607.37 schema:affiliation grid-institutes:grid.20513.35
225 schema:familyName Liang
226 schema:givenName Xia
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676124607.37
228 rdf:type schema:Person
229 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
230 https://doi.org/10.1007/bf00308809
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00213-004-2077-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005640740
233 https://doi.org/10.1007/s00213-004-2077-2
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s002210050838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004043636
236 https://doi.org/10.1007/s002210050838
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s00429-008-0195-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001715947
239 https://doi.org/10.1007/s00429-008-0195-z
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nrn2776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003249781
242 https://doi.org/10.1038/nrn2776
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nrneurol.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053231189
245 https://doi.org/10.1038/nrneurol.2009.198
246 rdf:type schema:CreativeWork
247 grid-institutes:grid.20513.35 schema:alternateName Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China
248 schema:name Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China
249 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
250 rdf:type schema:Organization
251 grid-institutes:grid.413259.8 schema:alternateName Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China
252 Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
253 Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
254 schema:name Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China
255 Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
256 Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
257 Key Laboratory for Neurodegenerative Diseases, Capital Medical University, Ministry of Education, 100069, Beijing, China
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...