Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer’s disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-01

AUTHORS

Zhiqun Wang, Mingrui Xia, Zhengjia Dai, Xia Liang, Haiqing Song, Yong He, Kuncheng Li

ABSTRACT

Recent research on Alzheimer’s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD. More... »

PAGES

745-762

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9

DOI

http://dx.doi.org/10.1007/s00429-013-0681-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035726550

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24292325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuropsychological Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parietal Lobe", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhiqun", 
        "id": "sg:person.0604063415.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604063415.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Mingrui", 
        "id": "sg:person.01114206503.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114206503.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Zhengjia", 
        "id": "sg:person.01076052402.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076052402.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Xia", 
        "id": "sg:person.0676124607.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676124607.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Haiqing", 
        "id": "sg:person.01212301002.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212301002.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
            "Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yong", 
        "id": "sg:person.013260143277.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China", 
            "Key Laboratory for Neurodegenerative Diseases, Capital Medical University, Ministry of Education, 100069, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrn2776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003249781", 
          "https://doi.org/10.1038/nrn2776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002210050838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004043636", 
          "https://doi.org/10.1007/s002210050838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00213-004-2077-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005640740", 
          "https://doi.org/10.1007/s00213-004-2077-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-008-0195-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001715947", 
          "https://doi.org/10.1007/s00429-008-0195-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355620", 
          "https://doi.org/10.1007/bf00308809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneurol.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053231189", 
          "https://doi.org/10.1038/nrneurol.2009.198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12-01", 
    "datePublishedReg": "2013-12-01", 
    "description": "Recent research on Alzheimer\u2019s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00429-013-0681-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1056924", 
        "issn": [
          "1863-2653", 
          "1863-2661"
        ], 
        "name": "Brain Structure and Function", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "220"
      }
    ], 
    "keywords": [
      "inferior parietal lobule", 
      "distinct functional connectivity patterns", 
      "default mode network", 
      "AD patients", 
      "Alzheimer's disease", 
      "functional connectivity patterns", 
      "functional connectivity", 
      "executive control network", 
      "sensorimotor network", 
      "whole-brain resting-state functional connectivity", 
      "salience network", 
      "parietal lobule", 
      "resting-state functional connectivity", 
      "posterior inferior parietal lobule", 
      "resting-state functional magnetic resonance", 
      "anterior inferior parietal lobule", 
      "functional connectivity changes", 
      "functional magnetic resonance", 
      "connectivity patterns", 
      "healthy controls", 
      "functional disconnection", 
      "AD subjects", 
      "patients", 
      "compensatory mechanisms", 
      "connectivity changes", 
      "disease", 
      "posterior part", 
      "cognitive performance", 
      "lobule", 
      "functional networks", 
      "magnetic resonance", 
      "altered structure", 
      "promising indicator", 
      "subregions", 
      "impairment", 
      "functional integration", 
      "control", 
      "subjects", 
      "patterns", 
      "recent research", 
      "connectivity", 
      "study", 
      "disruptive patterns", 
      "changes", 
      "mechanism", 
      "indicators", 
      "function", 
      "disconnection", 
      "data", 
      "analysis", 
      "results", 
      "part", 
      "research", 
      "resonance", 
      "atlases", 
      "connection", 
      "compensation", 
      "network", 
      "integration", 
      "performance", 
      "structure", 
      "different networks"
    ], 
    "name": "Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer\u2019s disease", 
    "pagination": "745-762", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035726550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00429-013-0681-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24292325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00429-013-0681-9", 
      "https://app.dimensions.ai/details/publication/pub.1035726550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00429-013-0681-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00429-013-0681-9'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      108 URIs      94 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00429-013-0681-9 schema:about N0209431efa2a4956b4422db0f072858d
2 N31f42354099743cb9266d661f657bf90
3 N60eedb8d91a144c3914886db9126a152
4 N70545a32b28f4a328586492d83767515
5 N90c28bb7331642418acdd51b3e6a5387
6 N95ad2f280a61469dbf5678d81aa50b2a
7 Na5d85e2cbb784fb4a761a82a6b1737e5
8 Naa2178743f71410c8748fede7bb937f8
9 Nab9a3854da69433fa5899c7b61f44f79
10 Nbdcd155cb46c46e4b341b8b8360b7564
11 Nc25409a0f532484a99359e88bb7003eb
12 Nc35676964ca94ccdb4a022c3c423e803
13 Ne0503221d566455da0b294e3fbe67340
14 Neab60ba82cd5467ea435fecc96ea7aea
15 Nf197bbdd7b6c46d48862091cca0eaec9
16 anzsrc-for:11
17 anzsrc-for:1109
18 schema:author N7cbc9081414949dc9cf9149272859363
19 schema:citation sg:pub.10.1007/bf00308809
20 sg:pub.10.1007/s00213-004-2077-2
21 sg:pub.10.1007/s002210050838
22 sg:pub.10.1007/s00429-008-0195-z
23 sg:pub.10.1038/nrn2776
24 sg:pub.10.1038/nrneurol.2009.198
25 schema:datePublished 2013-12-01
26 schema:datePublishedReg 2013-12-01
27 schema:description Recent research on Alzheimer’s disease (AD) has shown that the altered structure and function of the inferior parietal lobule (IPL) provides a promising indicator of AD. However, little is known about the functional connectivity of the IPL subregions in AD subjects. In this study, we collected resting-state functional magnetic resonance imaging data from 32 AD patients and 38 healthy controls. We defined seven subregions of the IPL according to probabilistic cytoarchitectonic atlases and mapped the whole-brain resting-state functional connectivity for each subregion. Using hierarchical clustering analysis, we identified three distinct functional connectivity patterns of the IPL subregions: the anterior IPL connected with the sensorimotor network (SMN) and salience network (SN); the central IPL had connectivity with the executive-control network (ECN); and the posterior IPL exhibited connections with the default-mode network (DMN). Compared with the controls, the AD patients demonstrated distinct disruptive patterns of the IPL subregional connectivity with these different networks (SMN, SN, ECN and DMN), which suggests the impairment of the functional integration in the IPL. Notably, we also observed that the IPL subregions showed increased connectivity with the posterior part of the DMN in AD patients, which potentially indicates a compensatory mechanism. Finally, these abnormal IPL functional connectivity changes were closely associated with cognitive performance. Collectively, we show that the subregions of the IPL present distinct functional connectivity patterns with various functional networks that are differentially impaired in AD patients. Our results also suggest that functional disconnection and compensation in the IPL may coexist in AD.
28 schema:genre article
29 schema:isAccessibleForFree false
30 schema:isPartOf N5989bb9a85ac414eb482c1b04a167779
31 N5ed3854ab2c5436e9b01ba1642e39e6d
32 sg:journal.1056924
33 schema:keywords AD patients
34 AD subjects
35 Alzheimer's disease
36 altered structure
37 analysis
38 anterior inferior parietal lobule
39 atlases
40 changes
41 cognitive performance
42 compensation
43 compensatory mechanisms
44 connection
45 connectivity
46 connectivity changes
47 connectivity patterns
48 control
49 data
50 default mode network
51 different networks
52 disconnection
53 disease
54 disruptive patterns
55 distinct functional connectivity patterns
56 executive control network
57 function
58 functional connectivity
59 functional connectivity changes
60 functional connectivity patterns
61 functional disconnection
62 functional integration
63 functional magnetic resonance
64 functional networks
65 healthy controls
66 impairment
67 indicators
68 inferior parietal lobule
69 integration
70 lobule
71 magnetic resonance
72 mechanism
73 network
74 parietal lobule
75 part
76 patients
77 patterns
78 performance
79 posterior inferior parietal lobule
80 posterior part
81 promising indicator
82 recent research
83 research
84 resonance
85 resting-state functional connectivity
86 resting-state functional magnetic resonance
87 results
88 salience network
89 sensorimotor network
90 structure
91 study
92 subjects
93 subregions
94 whole-brain resting-state functional connectivity
95 schema:name Differentially disrupted functional connectivity of the subregions of the inferior parietal lobule in Alzheimer’s disease
96 schema:pagination 745-762
97 schema:productId N234918a2cb84464ca057a4aa13e7be49
98 N32bc679bfa464e3cad1b1a511db70ad3
99 N4e8d9d4397d84e778e803f19918f8025
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035726550
101 https://doi.org/10.1007/s00429-013-0681-9
102 schema:sdDatePublished 2022-10-01T06:38
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N5971d02e54114a60a1a27c208ff90032
105 schema:url https://doi.org/10.1007/s00429-013-0681-9
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0209431efa2a4956b4422db0f072858d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Neural Pathways
111 rdf:type schema:DefinedTerm
112 N0d1e2481c77349df9144146f1ca86c2d rdf:first sg:person.013260143277.53
113 rdf:rest N2f6131ad74ff43d9a740db4bcd8553d5
114 N19274b68307f4a60bb6cea4d0bdbed1e rdf:first sg:person.01076052402.29
115 rdf:rest N3abd2cad5a7749e4b5999cc776dc814b
116 N234918a2cb84464ca057a4aa13e7be49 schema:name doi
117 schema:value 10.1007/s00429-013-0681-9
118 rdf:type schema:PropertyValue
119 N2f6131ad74ff43d9a740db4bcd8553d5 rdf:first sg:person.01326527402.59
120 rdf:rest rdf:nil
121 N31f42354099743cb9266d661f657bf90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Middle Aged
123 rdf:type schema:DefinedTerm
124 N32bc679bfa464e3cad1b1a511db70ad3 schema:name dimensions_id
125 schema:value pub.1035726550
126 rdf:type schema:PropertyValue
127 N3abd2cad5a7749e4b5999cc776dc814b rdf:first sg:person.0676124607.37
128 rdf:rest N9330739c3e4349e8845fe1a67da039a1
129 N47fa726818fa4551830a253123bb2010 rdf:first sg:person.01114206503.03
130 rdf:rest N19274b68307f4a60bb6cea4d0bdbed1e
131 N4e8d9d4397d84e778e803f19918f8025 schema:name pubmed_id
132 schema:value 24292325
133 rdf:type schema:PropertyValue
134 N5971d02e54114a60a1a27c208ff90032 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N5989bb9a85ac414eb482c1b04a167779 schema:issueNumber 2
137 rdf:type schema:PublicationIssue
138 N5ed3854ab2c5436e9b01ba1642e39e6d schema:volumeNumber 220
139 rdf:type schema:PublicationVolume
140 N60eedb8d91a144c3914886db9126a152 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 N70545a32b28f4a328586492d83767515 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Aged
145 rdf:type schema:DefinedTerm
146 N7cbc9081414949dc9cf9149272859363 rdf:first sg:person.0604063415.90
147 rdf:rest N47fa726818fa4551830a253123bb2010
148 N90c28bb7331642418acdd51b3e6a5387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N9330739c3e4349e8845fe1a67da039a1 rdf:first sg:person.01212301002.73
152 rdf:rest N0d1e2481c77349df9144146f1ca86c2d
153 N95ad2f280a61469dbf5678d81aa50b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Cluster Analysis
155 rdf:type schema:DefinedTerm
156 Na5d85e2cbb784fb4a761a82a6b1737e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Male
158 rdf:type schema:DefinedTerm
159 Naa2178743f71410c8748fede7bb937f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Parietal Lobe
161 rdf:type schema:DefinedTerm
162 Nab9a3854da69433fa5899c7b61f44f79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Neuropsychological Tests
164 rdf:type schema:DefinedTerm
165 Nbdcd155cb46c46e4b341b8b8360b7564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Brain
167 rdf:type schema:DefinedTerm
168 Nc25409a0f532484a99359e88bb7003eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Brain Mapping
170 rdf:type schema:DefinedTerm
171 Nc35676964ca94ccdb4a022c3c423e803 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Aged, 80 and over
173 rdf:type schema:DefinedTerm
174 Ne0503221d566455da0b294e3fbe67340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Magnetic Resonance Imaging
176 rdf:type schema:DefinedTerm
177 Neab60ba82cd5467ea435fecc96ea7aea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Nerve Net
179 rdf:type schema:DefinedTerm
180 Nf197bbdd7b6c46d48862091cca0eaec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Alzheimer Disease
182 rdf:type schema:DefinedTerm
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
187 schema:name Neurosciences
188 rdf:type schema:DefinedTerm
189 sg:journal.1056924 schema:issn 1863-2653
190 1863-2661
191 schema:name Brain Structure and Function
192 schema:publisher Springer Nature
193 rdf:type schema:Periodical
194 sg:person.01076052402.29 schema:affiliation grid-institutes:grid.20513.35
195 schema:familyName Dai
196 schema:givenName Zhengjia
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076052402.29
198 rdf:type schema:Person
199 sg:person.01114206503.03 schema:affiliation grid-institutes:grid.20513.35
200 schema:familyName Xia
201 schema:givenName Mingrui
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114206503.03
203 rdf:type schema:Person
204 sg:person.01212301002.73 schema:affiliation grid-institutes:grid.413259.8
205 schema:familyName Song
206 schema:givenName Haiqing
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212301002.73
208 rdf:type schema:Person
209 sg:person.013260143277.53 schema:affiliation grid-institutes:grid.20513.35
210 schema:familyName He
211 schema:givenName Yong
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53
213 rdf:type schema:Person
214 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
215 schema:familyName Li
216 schema:givenName Kuncheng
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
218 rdf:type schema:Person
219 sg:person.0604063415.90 schema:affiliation grid-institutes:grid.413259.8
220 schema:familyName Wang
221 schema:givenName Zhiqun
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604063415.90
223 rdf:type schema:Person
224 sg:person.0676124607.37 schema:affiliation grid-institutes:grid.20513.35
225 schema:familyName Liang
226 schema:givenName Xia
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676124607.37
228 rdf:type schema:Person
229 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
230 https://doi.org/10.1007/bf00308809
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00213-004-2077-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005640740
233 https://doi.org/10.1007/s00213-004-2077-2
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s002210050838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004043636
236 https://doi.org/10.1007/s002210050838
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s00429-008-0195-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001715947
239 https://doi.org/10.1007/s00429-008-0195-z
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nrn2776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003249781
242 https://doi.org/10.1038/nrn2776
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nrneurol.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053231189
245 https://doi.org/10.1038/nrneurol.2009.198
246 rdf:type schema:CreativeWork
247 grid-institutes:grid.20513.35 schema:alternateName Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China
248 schema:name Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China
249 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
250 rdf:type schema:Organization
251 grid-institutes:grid.413259.8 schema:alternateName Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China
252 Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
253 Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
254 schema:name Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 100875, Beijing, China
255 Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
256 Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
257 Key Laboratory for Neurodegenerative Diseases, Capital Medical University, Ministry of Education, 100069, Beijing, China
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...