The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia – implications for the evolution of C4 photosynthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

Oliver E. Bläsing, Karin Ernst, Monika Streubel, Peter Westhoff, Per Svensson

ABSTRACT

C4 phospho enolpyruvate carboxylases (PEPCase; EC 4.1.1.3) have evolved from ancestral non-photosynthetic (C3) isoforms during the evolution of angiosperms and thereby gained distinct kinetic and regulatory properties. In order to obtain insight into this evolutionary process we have studied the C3 isoforms, ppcB and ppcC, of the C4 dicot Flaveria trinervia (Spreng.) C. Mohr and compared them with the C4 enzyme of this species, ppcA, and its orthologue in the C3 species F. pringlei Gandoger. Phylogenetic analyses indicate that the ppcB PEPCase is the closest relative of the ppcA enzyme. In addition, the presence of ppcB also in the closely related C3 species F. pringlei suggests that this gene was present already in the ancestral C3 species and consequently that ppcA has evolved by gene duplication of ppcB. Investigation of the enzymatic properties of the ppcB and ppcC enzymes showed low and similar K(0.5)-PEP values and limited activation by glucose-6-phosphate, typical of non-photosynthetic PEPCases, at pH 8.0. However, at the more physiological pH of 7.6, the ppcC enzyme displayed a substantially higher K(0.5)-PEP than the ppcB counterpart, indicating their involvement in different metabolic pathways. This indication was strengthened by malate inhibition studies in which the ppcC enzyme showed 10 times higher tolerance to the inhibitor. The ppcA enzyme was, however, by far the most tolerant enzyme towards malate. Interestingly, the increased malate tolerance was correlated with a decrease in enzyme efficiency displayed by the turnover constant k(cat). We therefore suggest that the increased malate tolerance, which is imperative for an efficient C4 cycle, is connected with a decreased enzyme efficiency that in turn is compensated by increased enzyme expression. More... »

PAGES

448-456

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00425-002-0757-x

DOI

http://dx.doi.org/10.1007/s00425-002-0757-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018056668

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12111227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asteraceae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligodeoxyribonucleotides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphoenolpyruvate Carboxylase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Substrate Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heinrich Heine University D\u00fcsseldorf", 
          "id": "https://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institut f\u00fcr Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, 40225 D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bl\u00e4sing", 
        "givenName": "Oliver E.", 
        "id": "sg:person.0717015423.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717015423.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heinrich Heine University D\u00fcsseldorf", 
          "id": "https://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institut f\u00fcr Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, 40225 D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ernst", 
        "givenName": "Karin", 
        "id": "sg:person.01136475435.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136475435.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heinrich Heine University D\u00fcsseldorf", 
          "id": "https://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institut f\u00fcr Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, 40225 D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Streubel", 
        "givenName": "Monika", 
        "id": "sg:person.01200445211.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200445211.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heinrich Heine University D\u00fcsseldorf", 
          "id": "https://www.grid.ac/institutes/grid.411327.2", 
          "name": [
            "Institut f\u00fcr Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universit\u00e4t D\u00fcsseldorf, 40225 D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Westhoff", 
        "givenName": "Peter", 
        "id": "sg:person.0715640752.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715640752.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Department of Plant Biology, The Swedish University for Agricultural Sciences, 750\u00a007 Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svensson", 
        "givenName": "Per", 
        "id": "sg:person.0623775233.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623775233.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "C4 phospho enolpyruvate carboxylases (PEPCase; EC 4.1.1.3) have evolved from ancestral non-photosynthetic (C3) isoforms during the evolution of angiosperms and thereby gained distinct kinetic and regulatory properties. In order to obtain insight into this evolutionary process we have studied the C3 isoforms, ppcB and ppcC, of the C4 dicot Flaveria trinervia (Spreng.) C. Mohr and compared them with the C4 enzyme of this species, ppcA, and its orthologue in the C3 species F. pringlei Gandoger. Phylogenetic analyses indicate that the ppcB PEPCase is the closest relative of the ppcA enzyme. In addition, the presence of ppcB also in the closely related C3 species F. pringlei suggests that this gene was present already in the ancestral C3 species and consequently that ppcA has evolved by gene duplication of ppcB. Investigation of the enzymatic properties of the ppcB and ppcC enzymes showed low and similar K(0.5)-PEP values and limited activation by glucose-6-phosphate, typical of non-photosynthetic PEPCases, at pH 8.0. However, at the more physiological pH of 7.6, the ppcC enzyme displayed a substantially higher K(0.5)-PEP than the ppcB counterpart, indicating their involvement in different metabolic pathways. This indication was strengthened by malate inhibition studies in which the ppcC enzyme showed 10 times higher tolerance to the inhibitor. The ppcA enzyme was, however, by far the most tolerant enzyme towards malate. Interestingly, the increased malate tolerance was correlated with a decrease in enzyme efficiency displayed by the turnover constant k(cat). We therefore suggest that the increased malate tolerance, which is imperative for an efficient C4 cycle, is connected with a decreased enzyme efficiency that in turn is compensated by increased enzyme expression.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00425-002-0757-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1054035", 
        "issn": [
          "0032-0935", 
          "1432-2048"
        ], 
        "name": "Planta", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "215"
      }
    ], 
    "name": "The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia \u2013 implications for the evolution of C4 photosynthesis", 
    "pagination": "448-456", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5608d1eb892c3d9cb6dc3e31ac581201b6dca45db793a1c41eeba8488b402296"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12111227"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1250576"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00425-002-0757-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018056668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00425-002-0757-x", 
      "https://app.dimensions.ai/details/publication/pub.1018056668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00425-002-0757-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00425-002-0757-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00425-002-0757-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00425-002-0757-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00425-002-0757-x'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      20 PREDICATES      44 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00425-002-0757-x schema:about N01869f41e3dc473689885c162b9b0e7b
2 N36828710984a4d26b19b93b7d41401cc
3 N37051017c05a4f5ea5984a25a99b8b08
4 N4d7a0c6d3b344af7807240ce57cde58f
5 N4e05197a8e5c41e98efdc21abb8c627a
6 N50f37153878e41c0ad5c1f2be0f2038a
7 N5cf631a6101c449b8989125a42bcd712
8 N6b4ec840550d4b519da3dd9886136a42
9 N82e73c577b5e49758d676b0e32d66de8
10 N91175c4bef2e473694d18bb274b823d3
11 N938d5807210b4305b4fb9b272f4bb235
12 Nc2087583a478490f81f099c80ec449ac
13 Nc7612cb222d64cc39af9d28c072bdc1f
14 Nd4a287b63812481399e70a4d00451ca1
15 Nfd3a786e67064c81afa1e9f09c08ea39
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author N1d67eb6daf454f4d89cd48cc3d07e225
19 schema:datePublished 2002-07
20 schema:datePublishedReg 2002-07-01
21 schema:description C4 phospho enolpyruvate carboxylases (PEPCase; EC 4.1.1.3) have evolved from ancestral non-photosynthetic (C3) isoforms during the evolution of angiosperms and thereby gained distinct kinetic and regulatory properties. In order to obtain insight into this evolutionary process we have studied the C3 isoforms, ppcB and ppcC, of the C4 dicot Flaveria trinervia (Spreng.) C. Mohr and compared them with the C4 enzyme of this species, ppcA, and its orthologue in the C3 species F. pringlei Gandoger. Phylogenetic analyses indicate that the ppcB PEPCase is the closest relative of the ppcA enzyme. In addition, the presence of ppcB also in the closely related C3 species F. pringlei suggests that this gene was present already in the ancestral C3 species and consequently that ppcA has evolved by gene duplication of ppcB. Investigation of the enzymatic properties of the ppcB and ppcC enzymes showed low and similar K(0.5)-PEP values and limited activation by glucose-6-phosphate, typical of non-photosynthetic PEPCases, at pH 8.0. However, at the more physiological pH of 7.6, the ppcC enzyme displayed a substantially higher K(0.5)-PEP than the ppcB counterpart, indicating their involvement in different metabolic pathways. This indication was strengthened by malate inhibition studies in which the ppcC enzyme showed 10 times higher tolerance to the inhibitor. The ppcA enzyme was, however, by far the most tolerant enzyme towards malate. Interestingly, the increased malate tolerance was correlated with a decrease in enzyme efficiency displayed by the turnover constant k(cat). We therefore suggest that the increased malate tolerance, which is imperative for an efficient C4 cycle, is connected with a decreased enzyme efficiency that in turn is compensated by increased enzyme expression.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N336a4aff949d4dc1a5af9a8e5a6d0dd1
26 Nd7b2e4ad63f64d3abaaaf7840f349753
27 sg:journal.1054035
28 schema:name The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia – implications for the evolution of C4 photosynthesis
29 schema:pagination 448-456
30 schema:productId N0148021666e949b48dfb7a00f16ed369
31 N03c424c9833443dcaf041956b72962ab
32 N8b513e9a2bb943ea8e972392edfef15a
33 N8f92ff11601d487ab8d1d4d72b27daae
34 Nba7d47bcb13841e3800a419d35e74204
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018056668
36 https://doi.org/10.1007/s00425-002-0757-x
37 schema:sdDatePublished 2019-04-10T18:20
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nbb651af2a8c44861b2a8287ae402aaa0
40 schema:url http://link.springer.com/10.1007%2Fs00425-002-0757-x
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0148021666e949b48dfb7a00f16ed369 schema:name pubmed_id
45 schema:value 12111227
46 rdf:type schema:PropertyValue
47 N01869f41e3dc473689885c162b9b0e7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Phylogeny
49 rdf:type schema:DefinedTerm
50 N03c424c9833443dcaf041956b72962ab schema:name doi
51 schema:value 10.1007/s00425-002-0757-x
52 rdf:type schema:PropertyValue
53 N1d67eb6daf454f4d89cd48cc3d07e225 rdf:first sg:person.0717015423.45
54 rdf:rest Na45c6a1a3b0d4943aaa35907c28ce426
55 N336a4aff949d4dc1a5af9a8e5a6d0dd1 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N36828710984a4d26b19b93b7d41401cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Biological Evolution
59 rdf:type schema:DefinedTerm
60 N37051017c05a4f5ea5984a25a99b8b08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Species Specificity
62 rdf:type schema:DefinedTerm
63 N4d7a0c6d3b344af7807240ce57cde58f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Substrate Specificity
65 rdf:type schema:DefinedTerm
66 N4e05197a8e5c41e98efdc21abb8c627a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Oligodeoxyribonucleotides
68 rdf:type schema:DefinedTerm
69 N50f37153878e41c0ad5c1f2be0f2038a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Kinetics
71 rdf:type schema:DefinedTerm
72 N5cf631a6101c449b8989125a42bcd712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Molecular Sequence Data
74 rdf:type schema:DefinedTerm
75 N6b4ec840550d4b519da3dd9886136a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Phosphoenolpyruvate Carboxylase
77 rdf:type schema:DefinedTerm
78 N82e73c577b5e49758d676b0e32d66de8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Photosynthesis
80 rdf:type schema:DefinedTerm
81 N89560549b197468ea317b68ffc712cd4 rdf:first sg:person.0623775233.29
82 rdf:rest rdf:nil
83 N8b513e9a2bb943ea8e972392edfef15a schema:name readcube_id
84 schema:value 5608d1eb892c3d9cb6dc3e31ac581201b6dca45db793a1c41eeba8488b402296
85 rdf:type schema:PropertyValue
86 N8f92ff11601d487ab8d1d4d72b27daae schema:name nlm_unique_id
87 schema:value 1250576
88 rdf:type schema:PropertyValue
89 N91175c4bef2e473694d18bb274b823d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Amino Acid Sequence
91 rdf:type schema:DefinedTerm
92 N938d5807210b4305b4fb9b272f4bb235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cloning, Molecular
94 rdf:type schema:DefinedTerm
95 Na3d67d3a5136427cac21bebbac9f4edb rdf:first sg:person.0715640752.80
96 rdf:rest N89560549b197468ea317b68ffc712cd4
97 Na45c6a1a3b0d4943aaa35907c28ce426 rdf:first sg:person.01136475435.17
98 rdf:rest Nc6bbbb6a1313498e9044893c2786440f
99 Nba7d47bcb13841e3800a419d35e74204 schema:name dimensions_id
100 schema:value pub.1018056668
101 rdf:type schema:PropertyValue
102 Nbb651af2a8c44861b2a8287ae402aaa0 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nc2087583a478490f81f099c80ec449ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Asteraceae
106 rdf:type schema:DefinedTerm
107 Nc6bbbb6a1313498e9044893c2786440f rdf:first sg:person.01200445211.12
108 rdf:rest Na3d67d3a5136427cac21bebbac9f4edb
109 Nc7612cb222d64cc39af9d28c072bdc1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Base Sequence
111 rdf:type schema:DefinedTerm
112 Nd4a287b63812481399e70a4d00451ca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sequence Homology, Amino Acid
114 rdf:type schema:DefinedTerm
115 Nd7b2e4ad63f64d3abaaaf7840f349753 schema:volumeNumber 215
116 rdf:type schema:PublicationVolume
117 Nfd3a786e67064c81afa1e9f09c08ea39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sequence Alignment
119 rdf:type schema:DefinedTerm
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
124 schema:name Genetics
125 rdf:type schema:DefinedTerm
126 sg:journal.1054035 schema:issn 0032-0935
127 1432-2048
128 schema:name Planta
129 rdf:type schema:Periodical
130 sg:person.01136475435.17 schema:affiliation https://www.grid.ac/institutes/grid.411327.2
131 schema:familyName Ernst
132 schema:givenName Karin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136475435.17
134 rdf:type schema:Person
135 sg:person.01200445211.12 schema:affiliation https://www.grid.ac/institutes/grid.411327.2
136 schema:familyName Streubel
137 schema:givenName Monika
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200445211.12
139 rdf:type schema:Person
140 sg:person.0623775233.29 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
141 schema:familyName Svensson
142 schema:givenName Per
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623775233.29
144 rdf:type schema:Person
145 sg:person.0715640752.80 schema:affiliation https://www.grid.ac/institutes/grid.411327.2
146 schema:familyName Westhoff
147 schema:givenName Peter
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715640752.80
149 rdf:type schema:Person
150 sg:person.0717015423.45 schema:affiliation https://www.grid.ac/institutes/grid.411327.2
151 schema:familyName Bläsing
152 schema:givenName Oliver E.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717015423.45
154 rdf:type schema:Person
155 https://www.grid.ac/institutes/grid.411327.2 schema:alternateName Heinrich Heine University Düsseldorf
156 schema:name Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
159 schema:name Department of Plant Biology, The Swedish University for Agricultural Sciences, 750 07 Uppsala, Sweden
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...