Exercise regulates shelterin genes and microRNAs implicated in ageing in Thoroughbred horses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-09

AUTHORS

Shama Mandal, Michele M. Denham, Sarah J. Spencer, Joshua Denham

ABSTRACT

Ageing causes a gradual deterioration of bodily functions and telomere degradation. Excessive telomere shortening leads to cellular senescence and decreases tissue vitality. Six proteins, called shelterin, protect telomere integrity and control telomere length through telomerase-dependent mechanisms. Exercise training appears to maintain telomeres in certain somatic cells, although the underlying molecular mechanisms are incompletely understood. Here, we examined the influence of a single bout of vigorous exercise training on leukocyte telomerase reverse transcriptase (TERT) and shelterin gene expression, and the abundance of three microRNAs (miRNAs) implicated in biological ageing (miRNA-143, -223 and -486-5p) in an elite athlete and large animal model, Thoroughbred horses. Gene and miRNA expression were analysed using primer-based and TaqMan Assay qPCR. Leukocyte TRF1, TRF2 and POT1 expression were all significantly increased whilst miR-223 and miR-486-5p were decreased immediately after vigorous exercise (all p < 0.05), and tended to return to baseline levels 24 h after training. Relative to the young horses (~ 3.9 years old), middle-aged horses (~ 14.8 years old) exhibited reduced leukocyte TERT gene expression, and increased POT1 and miR-223 abundance (all p < 0.05). These data demonstrate that genes transcribing key components of the shelterin-telomere complex are influenced by ageing and dynamically regulated by a single bout of vigorous exercise in a large, athletic mammal — Thoroughbred horses. Our findings also implicate TERT and shelterin gene transcripts as potential targets of miR-223 and miR-486-5p, which are modulated by exercise and may have a role in the telomere maintenance and genomic stability associated with long-term aerobic training. More... »

PAGES

1159-1169

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00424-022-02745-0

DOI

http://dx.doi.org/10.1007/s00424-022-02745-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150888275

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36085194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Horses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Shelterin Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Telomerase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Telomere", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandal", 
        "givenName": "Shama", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jubilee Stud, Freshwater Creek, Victoria, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Jubilee Stud, Freshwater Creek, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denham", 
        "givenName": "Michele M.", 
        "id": "sg:person.013056053601.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056053601.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia", 
            "ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spencer", 
        "givenName": "Sarah J.", 
        "id": "sg:person.01255143322.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255143322.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science and Technology, University of New England, Armidale, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1020.3", 
          "name": [
            "School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia", 
            "School of Health and Medical Sciences, University of Southern Queensland, 4305, Ipswich, QLD, Australia", 
            "School of Science and Technology, University of New England, Armidale, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denham", 
        "givenName": "Joshua", 
        "id": "sg:person.01223041461.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223041461.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2199-9-49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040500877", 
          "https://doi.org/10.1186/1471-2199-9-49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-021-06275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136722587", 
          "https://doi.org/10.1007/s11033-021-06275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014616827", 
          "https://doi.org/10.1038/nature02118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048894838", 
          "https://doi.org/10.1038/nature01688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665503", 
          "https://doi.org/10.1038/nature11648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009193256", 
          "https://doi.org/10.1038/nature05454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep22932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011743535", 
          "https://doi.org/10.1038/srep22932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40279-016-0482-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038662621", 
          "https://doi.org/10.1007/s40279-016-0482-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40279-013-0114-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425105", 
          "https://doi.org/10.1007/s40279-013-0114-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1751-0147-55-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035053440", 
          "https://doi.org/10.1186/1751-0147-55-59"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-09", 
    "datePublishedReg": "2022-09-09", 
    "description": "Abstract\u00a0Ageing causes a gradual deterioration of bodily functions and telomere degradation. Excessive telomere shortening leads to cellular senescence and decreases tissue vitality. Six proteins, called shelterin, protect telomere integrity and control telomere length through telomerase-dependent mechanisms. Exercise training appears to maintain telomeres in certain somatic cells, although the underlying molecular mechanisms are incompletely understood. Here, we examined the influence of a single bout of vigorous exercise training on leukocyte telomerase reverse transcriptase (TERT) and shelterin gene expression, and the abundance of three microRNAs (miRNAs) implicated in biological ageing (miRNA-143, -223 and -486-5p) in an elite athlete and large animal model, Thoroughbred horses. Gene and miRNA expression were analysed using primer-based and TaqMan Assay qPCR. Leukocyte TRF1, TRF2 and POT1 expression were all significantly increased whilst miR-223 and miR-486-5p were decreased immediately after vigorous exercise (all p\u2009<\u20090.05), and tended to return to baseline levels 24\u00a0h after training. Relative to the young horses (~\u20093.9\u00a0years old), middle-aged horses (~\u200914.8\u00a0years old) exhibited reduced leukocyte TERT gene expression, and increased POT1 and miR-223 abundance (all p\u2009<\u20090.05). These data demonstrate that genes transcribing key components of the shelterin-telomere complex are influenced by ageing and dynamically regulated by a single bout of vigorous exercise in a large, athletic mammal \u2014 Thoroughbred horses. Our findings also implicate TERT and shelterin gene transcripts as potential targets of miR-223 and miR-486-5p, which are modulated by exercise and may have a role in the telomere maintenance and genomic stability associated with long-term aerobic training.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00424-022-02745-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1005222", 
        "issn": [
          "0031-6768", 
          "1432-2013"
        ], 
        "name": "Pfl\u00fcgers Archiv - European Journal of Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "474"
      }
    ], 
    "keywords": [
      "telomerase reverse transcriptase", 
      "gene expression", 
      "telomerase-dependent mechanism", 
      "TERT gene expression", 
      "shelterin gene expression", 
      "certain somatic cells", 
      "underlying molecular mechanisms", 
      "shelterin genes", 
      "telomere maintenance", 
      "genomic stability", 
      "somatic cells", 
      "telomere degradation", 
      "cellular senescence", 
      "gene transcripts", 
      "molecular mechanisms", 
      "shortening leads", 
      "miR-223", 
      "miRNA expression", 
      "genes", 
      "POT1 expression", 
      "potential target", 
      "miR-486-5p", 
      "microRNAs", 
      "reverse transcriptase", 
      "biological aging", 
      "expression", 
      "abundance", 
      "TRF1", 
      "TRF2", 
      "POT1", 
      "telomeres", 
      "senescence", 
      "tissue vitality", 
      "transcripts", 
      "key component", 
      "middle-aged horses", 
      "protein", 
      "Thoroughbred horses", 
      "mechanism", 
      "qPCR", 
      "transcriptase", 
      "cells", 
      "animal models", 
      "large animal model", 
      "aging", 
      "long-term aerobic training", 
      "single bout", 
      "horses", 
      "maintenance", 
      "target", 
      "degradation", 
      "bodily functions", 
      "role", 
      "integrity", 
      "function", 
      "bouts", 
      "components", 
      "length", 
      "Abstract", 
      "control", 
      "young horses", 
      "findings", 
      "levels 24", 
      "gradual deterioration", 
      "vitality", 
      "lead", 
      "data", 
      "exercise training", 
      "stability", 
      "influence", 
      "model", 
      "deterioration", 
      "vigorous exercise", 
      "exercise", 
      "elite athletes", 
      "aerobic training", 
      "training", 
      "athletes", 
      "baseline levels 24"
    ], 
    "name": "Exercise regulates shelterin genes and microRNAs implicated in ageing in Thoroughbred horses", 
    "pagination": "1159-1169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150888275"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00424-022-02745-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36085194"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00424-022-02745-0", 
      "https://app.dimensions.ai/details/publication/pub.1150888275"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00424-022-02745-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02745-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02745-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02745-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02745-0'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      122 URIs      104 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00424-022-02745-0 schema:about N0a730f0b6e3040b78377277ab17941f5
2 N3fed9efd07d6412aab94d9e69eb4942f
3 N5761b7724bbf486fb66a54429f23b374
4 N6e6befd73f314d7b867e26e591616de5
5 Nae2180f515a34949aa2bb2a16542e5d6
6 Nd2de6ba99b194abbaf10629869226dfd
7 Nf79fac332f744c00acda8ab79e6c394e
8 Nf9ecb06a09804b278b894bebc02b0d5c
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author Nf6bdff3aaf224baeac73776c175c5656
12 schema:citation sg:pub.10.1007/s11033-021-06275-3
13 sg:pub.10.1007/s40279-013-0114-1
14 sg:pub.10.1007/s40279-016-0482-4
15 sg:pub.10.1038/nature01688
16 sg:pub.10.1038/nature02118
17 sg:pub.10.1038/nature05454
18 sg:pub.10.1038/nature11648
19 sg:pub.10.1038/srep22932
20 sg:pub.10.1186/1471-2199-9-49
21 sg:pub.10.1186/1751-0147-55-59
22 schema:datePublished 2022-09-09
23 schema:datePublishedReg 2022-09-09
24 schema:description Abstract Ageing causes a gradual deterioration of bodily functions and telomere degradation. Excessive telomere shortening leads to cellular senescence and decreases tissue vitality. Six proteins, called shelterin, protect telomere integrity and control telomere length through telomerase-dependent mechanisms. Exercise training appears to maintain telomeres in certain somatic cells, although the underlying molecular mechanisms are incompletely understood. Here, we examined the influence of a single bout of vigorous exercise training on leukocyte telomerase reverse transcriptase (TERT) and shelterin gene expression, and the abundance of three microRNAs (miRNAs) implicated in biological ageing (miRNA-143, -223 and -486-5p) in an elite athlete and large animal model, Thoroughbred horses. Gene and miRNA expression were analysed using primer-based and TaqMan Assay qPCR. Leukocyte TRF1, TRF2 and POT1 expression were all significantly increased whilst miR-223 and miR-486-5p were decreased immediately after vigorous exercise (all p < 0.05), and tended to return to baseline levels 24 h after training. Relative to the young horses (~ 3.9 years old), middle-aged horses (~ 14.8 years old) exhibited reduced leukocyte TERT gene expression, and increased POT1 and miR-223 abundance (all p < 0.05). These data demonstrate that genes transcribing key components of the shelterin-telomere complex are influenced by ageing and dynamically regulated by a single bout of vigorous exercise in a large, athletic mammal — Thoroughbred horses. Our findings also implicate TERT and shelterin gene transcripts as potential targets of miR-223 and miR-486-5p, which are modulated by exercise and may have a role in the telomere maintenance and genomic stability associated with long-term aerobic training.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N0a787b72c4ab4469a96ed50987594180
28 Nec702b8890454ec891a945514bcfadb8
29 sg:journal.1005222
30 schema:keywords Abstract
31 POT1
32 POT1 expression
33 TERT gene expression
34 TRF1
35 TRF2
36 Thoroughbred horses
37 abundance
38 aerobic training
39 aging
40 animal models
41 athletes
42 baseline levels 24
43 biological aging
44 bodily functions
45 bouts
46 cells
47 cellular senescence
48 certain somatic cells
49 components
50 control
51 data
52 degradation
53 deterioration
54 elite athletes
55 exercise
56 exercise training
57 expression
58 findings
59 function
60 gene expression
61 gene transcripts
62 genes
63 genomic stability
64 gradual deterioration
65 horses
66 influence
67 integrity
68 key component
69 large animal model
70 lead
71 length
72 levels 24
73 long-term aerobic training
74 maintenance
75 mechanism
76 miR-223
77 miR-486-5p
78 miRNA expression
79 microRNAs
80 middle-aged horses
81 model
82 molecular mechanisms
83 potential target
84 protein
85 qPCR
86 reverse transcriptase
87 role
88 senescence
89 shelterin gene expression
90 shelterin genes
91 shortening leads
92 single bout
93 somatic cells
94 stability
95 target
96 telomerase reverse transcriptase
97 telomerase-dependent mechanism
98 telomere degradation
99 telomere maintenance
100 telomeres
101 tissue vitality
102 training
103 transcriptase
104 transcripts
105 underlying molecular mechanisms
106 vigorous exercise
107 vitality
108 young horses
109 schema:name Exercise regulates shelterin genes and microRNAs implicated in ageing in Thoroughbred horses
110 schema:pagination 1159-1169
111 schema:productId N17400d5cc4a64f0da96e003885cfb15c
112 N18594feea1534d24aacdb4e36091c0ce
113 Nd4c02eaa84e74431ba882fdbf77cf94c
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150888275
115 https://doi.org/10.1007/s00424-022-02745-0
116 schema:sdDatePublished 2022-11-24T21:08
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher Ne7277c19ad2547b7ada49a0263af93b4
119 schema:url https://doi.org/10.1007/s00424-022-02745-0
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N0a730f0b6e3040b78377277ab17941f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Telomere
125 rdf:type schema:DefinedTerm
126 N0a787b72c4ab4469a96ed50987594180 schema:issueNumber 11
127 rdf:type schema:PublicationIssue
128 N17400d5cc4a64f0da96e003885cfb15c schema:name doi
129 schema:value 10.1007/s00424-022-02745-0
130 rdf:type schema:PropertyValue
131 N18594feea1534d24aacdb4e36091c0ce schema:name dimensions_id
132 schema:value pub.1150888275
133 rdf:type schema:PropertyValue
134 N1c20cd4938f94f50b4074dc58c1a19da schema:affiliation grid-institutes:grid.1017.7
135 schema:familyName Mandal
136 schema:givenName Shama
137 rdf:type schema:Person
138 N376615376ccf4690b6172c392e3d321d rdf:first sg:person.013056053601.34
139 rdf:rest N3c80b3e362aa440bba90463e44637f6b
140 N3c80b3e362aa440bba90463e44637f6b rdf:first sg:person.01255143322.42
141 rdf:rest Nfd871dc217ba42c5ad7f649f4a5dca55
142 N3fed9efd07d6412aab94d9e69eb4942f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Shelterin Complex
144 rdf:type schema:DefinedTerm
145 N5761b7724bbf486fb66a54429f23b374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Aging
147 rdf:type schema:DefinedTerm
148 N6e6befd73f314d7b867e26e591616de5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Horses
150 rdf:type schema:DefinedTerm
151 Nae2180f515a34949aa2bb2a16542e5d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Mammals
153 rdf:type schema:DefinedTerm
154 Nd2de6ba99b194abbaf10629869226dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Telomerase
156 rdf:type schema:DefinedTerm
157 Nd4c02eaa84e74431ba882fdbf77cf94c schema:name pubmed_id
158 schema:value 36085194
159 rdf:type schema:PropertyValue
160 Ne7277c19ad2547b7ada49a0263af93b4 schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 Nec702b8890454ec891a945514bcfadb8 schema:volumeNumber 474
163 rdf:type schema:PublicationVolume
164 Nf6bdff3aaf224baeac73776c175c5656 rdf:first N1c20cd4938f94f50b4074dc58c1a19da
165 rdf:rest N376615376ccf4690b6172c392e3d321d
166 Nf79fac332f744c00acda8ab79e6c394e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Animals
168 rdf:type schema:DefinedTerm
169 Nf9ecb06a09804b278b894bebc02b0d5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name MicroRNAs
171 rdf:type schema:DefinedTerm
172 Nfd871dc217ba42c5ad7f649f4a5dca55 rdf:first sg:person.01223041461.56
173 rdf:rest rdf:nil
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
178 schema:name Genetics
179 rdf:type schema:DefinedTerm
180 sg:journal.1005222 schema:issn 0031-6768
181 1432-2013
182 schema:name Pflügers Archiv - European Journal of Physiology
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.01223041461.56 schema:affiliation grid-institutes:grid.1020.3
186 schema:familyName Denham
187 schema:givenName Joshua
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223041461.56
189 rdf:type schema:Person
190 sg:person.01255143322.42 schema:affiliation grid-institutes:grid.1017.7
191 schema:familyName Spencer
192 schema:givenName Sarah J.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255143322.42
194 rdf:type schema:Person
195 sg:person.013056053601.34 schema:affiliation grid-institutes:None
196 schema:familyName Denham
197 schema:givenName Michele M.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056053601.34
199 rdf:type schema:Person
200 sg:pub.10.1007/s11033-021-06275-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136722587
201 https://doi.org/10.1007/s11033-021-06275-3
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s40279-013-0114-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425105
204 https://doi.org/10.1007/s40279-013-0114-1
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s40279-016-0482-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038662621
207 https://doi.org/10.1007/s40279-016-0482-4
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature01688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048894838
210 https://doi.org/10.1038/nature01688
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature02118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014616827
213 https://doi.org/10.1038/nature02118
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature05454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009193256
216 https://doi.org/10.1038/nature05454
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature11648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665503
219 https://doi.org/10.1038/nature11648
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/srep22932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011743535
222 https://doi.org/10.1038/srep22932
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2199-9-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040500877
225 https://doi.org/10.1186/1471-2199-9-49
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1751-0147-55-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035053440
228 https://doi.org/10.1186/1751-0147-55-59
229 rdf:type schema:CreativeWork
230 grid-institutes:None schema:alternateName Jubilee Stud, Freshwater Creek, Victoria, Australia
231 schema:name Jubilee Stud, Freshwater Creek, Victoria, Australia
232 rdf:type schema:Organization
233 grid-institutes:grid.1017.7 schema:alternateName ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
234 School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
235 schema:name ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
236 School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
237 rdf:type schema:Organization
238 grid-institutes:grid.1020.3 schema:alternateName School of Science and Technology, University of New England, Armidale, NSW, Australia
239 schema:name School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
240 School of Health and Medical Sciences, University of Southern Queensland, 4305, Ipswich, QLD, Australia
241 School of Science and Technology, University of New England, Armidale, NSW, Australia
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...