Human macrophages directly modulate iPSC-derived cardiomyocytes at healthy state and congenital arrhythmia model in vitro View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-16

AUTHORS

Arzuhan Koc, Celal Akdeniz, Esra Cagavi

ABSTRACT

The electrophysiological regulation of cardiomyocytes (CMs) by the cardiac macrophages (MΦs) has been recently described as an unconventional role of MΦs in the murine heart. Investigating the molecular and physiological modulation of CM by MΦ is critical to understand the novel mechanisms behind cardiac disorders from the systems perspective and to develop new therapeutic approaches. Here, we developed an in vitro direct coculture system to investigate the cellular and functional interaction between human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and monocyte-derived MΦs both in healthy-state and congenital arrhythmia disease model associated with SCN5A ion channel mutations. Congenital arrhythmia patient-derived (P) and healthy individual-derived control (C) monocytes and derived MΦs exhibited distinct M1- and M2-like polarization-related gene expression pattern. The iPSC-CMs and MΦs formed direct membrane contacts in cocultures demonstrated by time-lapse imaging, scanning electron microscopy, and immunolabeling. The intracellular Ca2+ transients were observed in iPSC-CMs and MΦs when in contact with each other. Interestingly, the C-MΦs in direct contact with C-CMs significantly accelerated the contraction rates, demonstrating the positive chronotropic effect of MΦs on healthy cardiac cultures. Furthermore, the MΦs carrying the SCN5A gene mutation significantly enhanced the arrhythmic events in both C-CMs and P-CMs, implying that the sodium channel mutation in the MΦ is important for the CM function. Importantly, when C-MΦs were coupled to tachycardic P-CMs, the contraction frequency drastically decreased, and rhythmicity enhanced implicating the amelioration of the disease phenotype in vitro. Consequently, our results indicated the functional regulatory role of MΦs on human iPSC-CM contractility by membrane contacts in a physiologically relevant in vitro coculture model of both steady-state and arrhythmia. Our findings could serve as a valuable source for the development of effective immunoregulatory therapies for cardiac arrhythmia in the future.Graphical abstract More... »

PAGES

1295-1310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00424-022-02743-2

DOI

http://dx.doi.org/10.1007/s00424-022-02743-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151071799

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36112216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Induced Pluripotent Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocytes, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arrhythmias, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical Microbiology Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411781.a", 
          "name": [
            "Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Kavacik Mah. Ekinciler Cad. No:19 Beykoz, 34810, Istanbul, Turkey", 
            "Medical Microbiology Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koc", 
        "givenName": "Arzuhan", 
        "id": "sg:person.01157402170.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157402170.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatric Cardiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411781.a", 
          "name": [
            "Department of Pediatric Cardiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akdeniz", 
        "givenName": "Celal", 
        "id": "sg:person.01223175523.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223175523.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Biology and Genetics Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411781.a", 
          "name": [
            "Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Kavacik Mah. Ekinciler Cad. No:19 Beykoz, 34810, Istanbul, Turkey", 
            "Department of Medical Biology, School of Medicine, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey", 
            "Medical Biology and Genetics Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cagavi", 
        "givenName": "Esra", 
        "id": "sg:person.01301523144.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301523144.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00395-016-0584-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018478240", 
          "https://doi.org/10.1007/s00395-016-0584-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41572-020-0188-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129379077", 
          "https://doi.org/10.1038/s41572-020-0188-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41392-020-00455-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135551973", 
          "https://doi.org/10.1038/s41392-020-00455-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042269897", 
          "https://doi.org/10.1038/nprot.2012.150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41577-018-0065-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107078368", 
          "https://doi.org/10.1038/s41577-018-0065-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11897-017-0337-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090312262", 
          "https://doi.org/10.1007/s11897-017-0337-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00395-018-0686-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104378842", 
          "https://doi.org/10.1007/s00395-018-0686-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep42162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083733714", 
          "https://doi.org/10.1038/srep42162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41590-018-0272-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110405321", 
          "https://doi.org/10.1038/s41590-018-0272-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri3800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002078463", 
          "https://doi.org/10.1038/nri3800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-16", 
    "datePublishedReg": "2022-09-16", 
    "description": "Abstract\nThe electrophysiological regulation of cardiomyocytes (CMs) by the cardiac macrophages (M\u03a6s) has been recently described as an unconventional role of M\u03a6s in the murine heart. Investigating the molecular and physiological modulation of CM by M\u03a6 is critical to understand the novel mechanisms behind cardiac disorders from the systems perspective and to develop new therapeutic approaches. Here, we developed an in vitro direct coculture system to investigate the cellular and functional interaction between human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and monocyte-derived M\u03a6s both in healthy-state and congenital arrhythmia disease model associated with SCN5A ion channel mutations. Congenital arrhythmia patient-derived (P) and healthy individual-derived control (C) monocytes and derived M\u03a6s exhibited distinct M1- and M2-like polarization-related gene expression pattern. The iPSC-CMs and M\u03a6s formed direct membrane contacts in cocultures demonstrated by time-lapse imaging, scanning electron microscopy, and immunolabeling. The intracellular Ca2+ transients were observed in iPSC-CMs and M\u03a6s when in contact with each other. Interestingly, the C-M\u03a6s in direct contact with C-CMs significantly accelerated the contraction rates, demonstrating the positive chronotropic effect of M\u03a6s on healthy cardiac cultures. Furthermore, the M\u03a6s carrying the SCN5A gene mutation significantly enhanced the arrhythmic events in both C-CMs and P-CMs, implying that the sodium channel mutation in the M\u03a6 is important for the CM function. Importantly, when C-M\u03a6s were coupled to tachycardic P-CMs, the contraction frequency drastically decreased, and rhythmicity enhanced implicating the amelioration of the disease phenotype in vitro. Consequently, our results indicated the functional regulatory role of M\u03a6s on human iPSC-CM contractility by membrane contacts in a physiologically relevant in vitro coculture model of both steady-state and arrhythmia. Our findings could serve as a valuable source for the development of effective immunoregulatory therapies for cardiac arrhythmia in the future.Graphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00424-022-02743-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005222", 
        "issn": [
          "0031-6768", 
          "1432-2013"
        ], 
        "name": "Pfl\u00fcgers Archiv - European Journal of Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "474"
      }
    ], 
    "keywords": [
      "membrane contact", 
      "gene expression patterns", 
      "functional regulatory role", 
      "channel mutations", 
      "time-lapse imaging", 
      "sodium channel mutations", 
      "ion channel mutations", 
      "direct coculture system", 
      "expression patterns", 
      "unconventional role", 
      "direct membrane contact", 
      "regulatory role", 
      "functional interaction", 
      "novel mechanism", 
      "positive chronotropic effect", 
      "P-CM", 
      "iPSC-CMs", 
      "stem cell-derived cardiomyocytes", 
      "disease phenotype", 
      "monocyte-derived M\u03a6", 
      "new therapeutic approaches", 
      "pluripotent stem cell-derived cardiomyocytes", 
      "human-induced pluripotent stem cell-derived cardiomyocytes", 
      "human macrophages", 
      "cell-derived cardiomyocytes", 
      "SCN5A gene mutations", 
      "mutations", 
      "physiological modulation", 
      "cardiac macrophages", 
      "distinct M1", 
      "murine heart", 
      "immunoregulatory therapy", 
      "chronotropic effect", 
      "arrhythmic events", 
      "arrhythmia model", 
      "coculture model", 
      "coculture system", 
      "therapeutic approaches", 
      "contraction frequency", 
      "gene mutations", 
      "control monocytes", 
      "cardiac arrhythmias", 
      "cardiac disorders", 
      "intracellular Ca2", 
      "congenital arrhythmias", 
      "cardiomyocytes", 
      "disease models", 
      "arrhythmias", 
      "M\u03a6", 
      "valuable source", 
      "macrophages", 
      "contraction rate", 
      "cardiac cultures", 
      "phenotype", 
      "regulation", 
      "healthy state", 
      "iPSCs", 
      "C-CM", 
      "role", 
      "therapy", 
      "monocytes", 
      "contractility", 
      "CM function", 
      "coculture", 
      "direct contact", 
      "disorders", 
      "Ca2", 
      "rhythmicity", 
      "amelioration", 
      "heart", 
      "mechanism", 
      "electron microscopy", 
      "M1", 
      "interaction", 
      "imaging", 
      "modulation", 
      "culture", 
      "patterns", 
      "function", 
      "findings", 
      "contact", 
      "microscopy", 
      "events", 
      "development", 
      "rate", 
      "systems perspective", 
      "effect", 
      "frequency", 
      "source", 
      "model", 
      "results", 
      "system", 
      "future", 
      "transients", 
      "approach", 
      "state", 
      "perspective"
    ], 
    "name": "Human macrophages directly modulate iPSC-derived cardiomyocytes at healthy state and congenital arrhythmia model in vitro", 
    "pagination": "1295-1310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151071799"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00424-022-02743-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36112216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00424-022-02743-2", 
      "https://app.dimensions.ai/details/publication/pub.1151071799"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00424-022-02743-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02743-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02743-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02743-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00424-022-02743-2'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      141 URIs      123 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00424-022-02743-2 schema:about N10485e6208bb473fbdbbc73ebc2af3dc
2 N1b94e420c30145fcb28ca72790d8b201
3 N2afc2bae75bc415daaf3a539c489ee66
4 N718caea05f6344789fd6bacae6fa99ba
5 N769d3dbcd099494a8c32c3370e459b30
6 N8c0b8e37444145d1a5e85f857836f571
7 N8fa80c4139824334a9d7522de0d8b313
8 Nb7c58d2c2ba749a59f967be350898e51
9 Nf954c4cd1e9e408197883cad3b8b45a6
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N4f7345de60fe42798e237ec22c0bad0c
13 schema:citation sg:pub.10.1007/s00395-016-0584-z
14 sg:pub.10.1007/s00395-018-0686-x
15 sg:pub.10.1007/s11897-017-0337-9
16 sg:pub.10.1038/nprot.2012.150
17 sg:pub.10.1038/nri3800
18 sg:pub.10.1038/s41392-020-00455-6
19 sg:pub.10.1038/s41572-020-0188-7
20 sg:pub.10.1038/s41577-018-0065-8
21 sg:pub.10.1038/s41590-018-0272-2
22 sg:pub.10.1038/srep42162
23 schema:datePublished 2022-09-16
24 schema:datePublishedReg 2022-09-16
25 schema:description Abstract The electrophysiological regulation of cardiomyocytes (CMs) by the cardiac macrophages (MΦs) has been recently described as an unconventional role of MΦs in the murine heart. Investigating the molecular and physiological modulation of CM by MΦ is critical to understand the novel mechanisms behind cardiac disorders from the systems perspective and to develop new therapeutic approaches. Here, we developed an in vitro direct coculture system to investigate the cellular and functional interaction between human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and monocyte-derived MΦs both in healthy-state and congenital arrhythmia disease model associated with SCN5A ion channel mutations. Congenital arrhythmia patient-derived (P) and healthy individual-derived control (C) monocytes and derived MΦs exhibited distinct M1- and M2-like polarization-related gene expression pattern. The iPSC-CMs and MΦs formed direct membrane contacts in cocultures demonstrated by time-lapse imaging, scanning electron microscopy, and immunolabeling. The intracellular Ca2+ transients were observed in iPSC-CMs and MΦs when in contact with each other. Interestingly, the C-MΦs in direct contact with C-CMs significantly accelerated the contraction rates, demonstrating the positive chronotropic effect of MΦs on healthy cardiac cultures. Furthermore, the MΦs carrying the SCN5A gene mutation significantly enhanced the arrhythmic events in both C-CMs and P-CMs, implying that the sodium channel mutation in the MΦ is important for the CM function. Importantly, when C-MΦs were coupled to tachycardic P-CMs, the contraction frequency drastically decreased, and rhythmicity enhanced implicating the amelioration of the disease phenotype in vitro. Consequently, our results indicated the functional regulatory role of MΦs on human iPSC-CM contractility by membrane contacts in a physiologically relevant in vitro coculture model of both steady-state and arrhythmia. Our findings could serve as a valuable source for the development of effective immunoregulatory therapies for cardiac arrhythmia in the future.Graphical abstract
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf N99419982dbf94a9d8034576d9a528094
29 Na54bae12061d4cde8bb76b712eff1031
30 sg:journal.1005222
31 schema:keywords C-CM
32 CM function
33 Ca2
34 M1
35
36 P-CM
37 SCN5A gene mutations
38 amelioration
39 approach
40 arrhythmia model
41 arrhythmias
42 arrhythmic events
43 cardiac arrhythmias
44 cardiac cultures
45 cardiac disorders
46 cardiac macrophages
47 cardiomyocytes
48 cell-derived cardiomyocytes
49 channel mutations
50 chronotropic effect
51 coculture
52 coculture model
53 coculture system
54 congenital arrhythmias
55 contact
56 contractility
57 contraction frequency
58 contraction rate
59 control monocytes
60 culture
61 development
62 direct coculture system
63 direct contact
64 direct membrane contact
65 disease models
66 disease phenotype
67 disorders
68 distinct M1
69 effect
70 electron microscopy
71 events
72 expression patterns
73 findings
74 frequency
75 function
76 functional interaction
77 functional regulatory role
78 future
79 gene expression patterns
80 gene mutations
81 healthy state
82 heart
83 human macrophages
84 human-induced pluripotent stem cell-derived cardiomyocytes
85 iPSC-CMs
86 iPSCs
87 imaging
88 immunoregulatory therapy
89 interaction
90 intracellular Ca2
91 ion channel mutations
92 macrophages
93 mechanism
94 membrane contact
95 microscopy
96 model
97 modulation
98 monocyte-derived MΦ
99 monocytes
100 murine heart
101 mutations
102 new therapeutic approaches
103 novel mechanism
104 patterns
105 perspective
106 phenotype
107 physiological modulation
108 pluripotent stem cell-derived cardiomyocytes
109 positive chronotropic effect
110 rate
111 regulation
112 regulatory role
113 results
114 rhythmicity
115 role
116 sodium channel mutations
117 source
118 state
119 stem cell-derived cardiomyocytes
120 system
121 systems perspective
122 therapeutic approaches
123 therapy
124 time-lapse imaging
125 transients
126 unconventional role
127 valuable source
128 schema:name Human macrophages directly modulate iPSC-derived cardiomyocytes at healthy state and congenital arrhythmia model in vitro
129 schema:pagination 1295-1310
130 schema:productId N2fa8f257da7b488c88cf4837694b57fb
131 N3172194db39e4b90891d54b6f93d748b
132 Na22e3bb1a6d04559bd76aefa0faaf137
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151071799
134 https://doi.org/10.1007/s00424-022-02743-2
135 schema:sdDatePublished 2022-11-24T21:08
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N2d7e7512fb2f4f0893887774fae35e28
138 schema:url https://doi.org/10.1007/s00424-022-02743-2
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N10485e6208bb473fbdbbc73ebc2af3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Mice
144 rdf:type schema:DefinedTerm
145 N1b94e420c30145fcb28ca72790d8b201 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Induced Pluripotent Stem Cells
147 rdf:type schema:DefinedTerm
148 N2afc2bae75bc415daaf3a539c489ee66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Animals
150 rdf:type schema:DefinedTerm
151 N2d7e7512fb2f4f0893887774fae35e28 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N2fa8f257da7b488c88cf4837694b57fb schema:name doi
154 schema:value 10.1007/s00424-022-02743-2
155 rdf:type schema:PropertyValue
156 N3172194db39e4b90891d54b6f93d748b schema:name dimensions_id
157 schema:value pub.1151071799
158 rdf:type schema:PropertyValue
159 N3b50ca55f50d42d688225c38991d64dd rdf:first sg:person.01223175523.88
160 rdf:rest Ne47eb3607e994580a04487286dc0e350
161 N4f7345de60fe42798e237ec22c0bad0c rdf:first sg:person.01157402170.04
162 rdf:rest N3b50ca55f50d42d688225c38991d64dd
163 N718caea05f6344789fd6bacae6fa99ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Myocytes, Cardiac
165 rdf:type schema:DefinedTerm
166 N769d3dbcd099494a8c32c3370e459b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Phenotype
168 rdf:type schema:DefinedTerm
169 N8c0b8e37444145d1a5e85f857836f571 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Macrophages
171 rdf:type schema:DefinedTerm
172 N8fa80c4139824334a9d7522de0d8b313 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Arrhythmias, Cardiac
174 rdf:type schema:DefinedTerm
175 N99419982dbf94a9d8034576d9a528094 schema:volumeNumber 474
176 rdf:type schema:PublicationVolume
177 Na22e3bb1a6d04559bd76aefa0faaf137 schema:name pubmed_id
178 schema:value 36112216
179 rdf:type schema:PropertyValue
180 Na54bae12061d4cde8bb76b712eff1031 schema:issueNumber 12
181 rdf:type schema:PublicationIssue
182 Nb7c58d2c2ba749a59f967be350898e51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Cell Differentiation
184 rdf:type schema:DefinedTerm
185 Ne47eb3607e994580a04487286dc0e350 rdf:first sg:person.01301523144.78
186 rdf:rest rdf:nil
187 Nf954c4cd1e9e408197883cad3b8b45a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Humans
189 rdf:type schema:DefinedTerm
190 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biological Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
194 schema:name Biochemistry and Cell Biology
195 rdf:type schema:DefinedTerm
196 sg:journal.1005222 schema:issn 0031-6768
197 1432-2013
198 schema:name Pflügers Archiv - European Journal of Physiology
199 schema:publisher Springer Nature
200 rdf:type schema:Periodical
201 sg:person.01157402170.04 schema:affiliation grid-institutes:grid.411781.a
202 schema:familyName Koc
203 schema:givenName Arzuhan
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157402170.04
205 rdf:type schema:Person
206 sg:person.01223175523.88 schema:affiliation grid-institutes:grid.411781.a
207 schema:familyName Akdeniz
208 schema:givenName Celal
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223175523.88
210 rdf:type schema:Person
211 sg:person.01301523144.78 schema:affiliation grid-institutes:grid.411781.a
212 schema:familyName Cagavi
213 schema:givenName Esra
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301523144.78
215 rdf:type schema:Person
216 sg:pub.10.1007/s00395-016-0584-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018478240
217 https://doi.org/10.1007/s00395-016-0584-z
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00395-018-0686-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104378842
220 https://doi.org/10.1007/s00395-018-0686-x
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s11897-017-0337-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090312262
223 https://doi.org/10.1007/s11897-017-0337-9
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nprot.2012.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042269897
226 https://doi.org/10.1038/nprot.2012.150
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nri3800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002078463
229 https://doi.org/10.1038/nri3800
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/s41392-020-00455-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135551973
232 https://doi.org/10.1038/s41392-020-00455-6
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/s41572-020-0188-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129379077
235 https://doi.org/10.1038/s41572-020-0188-7
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/s41577-018-0065-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107078368
238 https://doi.org/10.1038/s41577-018-0065-8
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/s41590-018-0272-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110405321
241 https://doi.org/10.1038/s41590-018-0272-2
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/srep42162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083733714
244 https://doi.org/10.1038/srep42162
245 rdf:type schema:CreativeWork
246 grid-institutes:grid.411781.a schema:alternateName Department of Pediatric Cardiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
247 Medical Biology and Genetics Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
248 Medical Microbiology Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
249 schema:name Department of Medical Biology, School of Medicine, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
250 Department of Pediatric Cardiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
251 Medical Biology and Genetics Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
252 Medical Microbiology Graduate Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
253 Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Kavacik Mah. Ekinciler Cad. No:19 Beykoz, 34810, Istanbul, Turkey
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...