Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-01

AUTHORS

Nozomu Sakai, Koichi Hayano, Takashi Mishima, Katsunori Furukawa, Tsukasa Takayashiki, Satoshi Kuboki, Shigetsugu Takano, Yohei Kawasaki, Hisahiro Matsubara, Masayuki Ohtsuka

ABSTRACT

PurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM. More... »

PAGES

1981-1989

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z

DOI

http://dx.doi.org/10.1007/s00423-022-02482-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146805544

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35362752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Nozomu", 
        "id": "sg:person.0737651177.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737651177.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayano", 
        "givenName": "Koichi", 
        "id": "sg:person.0777065206.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777065206.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishima", 
        "givenName": "Takashi", 
        "id": "sg:person.01151022512.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151022512.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furukawa", 
        "givenName": "Katsunori", 
        "id": "sg:person.01013120705.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013120705.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayashiki", 
        "givenName": "Tsukasa", 
        "id": "sg:person.01344552466.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344552466.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuboki", 
        "givenName": "Satoshi", 
        "id": "sg:person.0621146366.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621146366.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takano", 
        "givenName": "Shigetsugu", 
        "id": "sg:person.01266546053.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266546053.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.443371.6", 
          "name": [
            "Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawasaki", 
        "givenName": "Yohei", 
        "id": "sg:person.01340003061.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340003061.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsubara", 
        "givenName": "Hisahiro", 
        "id": "sg:person.010363211172.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363211172.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtsuka", 
        "givenName": "Masayuki", 
        "id": "sg:person.0653527253.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12885-017-3925-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100403337", 
          "https://doi.org/10.1186/s12885-017-3925-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11748-020-01368-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126891820", 
          "https://doi.org/10.1007/s11748-020-01368-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-3504-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020566781", 
          "https://doi.org/10.1245/s10434-014-3504-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-63644-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126659917", 
          "https://doi.org/10.1038/s41598-020-63644-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2016.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020337183", 
          "https://doi.org/10.1038/bjc.2016.155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051796975", 
          "https://doi.org/10.1186/1471-2407-14-810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-019-07934-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121836454", 
          "https://doi.org/10.1245/s10434-019-07934-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-4255-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091887259", 
          "https://doi.org/10.1007/s00268-017-4255-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-01", 
    "datePublishedReg": "2022-04-01", 
    "description": "Abstract\nPurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction\u2009\u2265\u20090.0258, which was significantly higher than that in patients with fat signal fraction\u2009<\u20090.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction\u2009<\u20090.0258 than in those with fat signal fraction\u2009\u2265\u20090.0258. Multivariate analyses revealed that fat signal fraction\u2009\u2265\u20090.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00423-022-02482-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1371202", 
        "issn": [
          "1435-2443", 
          "1435-2451"
        ], 
        "name": "Langenbeck's Archives of Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "keywords": [
      "colorectal liver metastases", 
      "magnetic resonance imaging", 
      "fat signal fraction", 
      "initial hepatectomy", 
      "hepatic recurrence", 
      "liver metastases", 
      "hepatic steatosis", 
      "nonalcoholic fatty liver disease activity score", 
      "recurrence-free survival rates", 
      "Disease Activity Score", 
      "liver-spleen ratio", 
      "hepatic recurrence rate", 
      "independent risk factor", 
      "hepatic resection", 
      "signal fraction", 
      "survival outcomes", 
      "activity score", 
      "recurrence rate", 
      "risk factors", 
      "medical records", 
      "patients", 
      "recurrence", 
      "survival rate", 
      "multivariate analysis", 
      "hepatectomy", 
      "resonance imaging", 
      "PurposeThe effects", 
      "steatosis", 
      "metastasis", 
      "resection", 
      "outcomes", 
      "scores", 
      "rate", 
      "imaging", 
      "effect", 
      "fraction", 
      "factors", 
      "records", 
      "study", 
      "usefulness", 
      "development", 
      "ratio", 
      "analysis"
    ], 
    "name": "Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases", 
    "pagination": "1981-1989", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146805544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00423-022-02482-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35362752"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00423-022-02482-z", 
      "https://app.dimensions.ai/details/publication/pub.1146805544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_952.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00423-022-02482-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      84 URIs      68 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00423-022-02482-z schema:about N13dcc08ab78a4fefbfcf3aea1c655635
2 N850d24d68309497e8dc8fb13b46ccf3d
3 N8989ab8232e04278bc7b8c79acf248e4
4 N97a8f009a7504602a02411c8d575550c
5 N9b79b3834bea437698755ce8068550b5
6 Nec5284b4180a473fbbb571dbd4a93bdc
7 Nec8aed6816554024aee7916d9de39ab2
8 Nf21936935dc64d949ebe5c010b5aec9f
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author Na018ef26fccf4dc9888a0b593028d211
12 schema:citation sg:pub.10.1007/s00268-017-4255-5
13 sg:pub.10.1007/s11748-020-01368-5
14 sg:pub.10.1038/bjc.2016.155
15 sg:pub.10.1038/s41598-020-63644-x
16 sg:pub.10.1186/1471-2407-14-810
17 sg:pub.10.1186/s12885-017-3925-x
18 sg:pub.10.1245/s10434-014-3504-1
19 sg:pub.10.1245/s10434-019-07934-3
20 schema:datePublished 2022-04-01
21 schema:datePublishedReg 2022-04-01
22 schema:description Abstract PurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N453e1aed48624898af6ccc883146031b
26 N75835e2a260d42eab2df82d1ab0409a1
27 sg:journal.1371202
28 schema:keywords Disease Activity Score
29 PurposeThe effects
30 activity score
31 analysis
32 colorectal liver metastases
33 development
34 effect
35 factors
36 fat signal fraction
37 fraction
38 hepatectomy
39 hepatic recurrence
40 hepatic recurrence rate
41 hepatic resection
42 hepatic steatosis
43 imaging
44 independent risk factor
45 initial hepatectomy
46 liver metastases
47 liver-spleen ratio
48 magnetic resonance imaging
49 medical records
50 metastasis
51 multivariate analysis
52 nonalcoholic fatty liver disease activity score
53 outcomes
54 patients
55 rate
56 ratio
57 records
58 recurrence
59 recurrence rate
60 recurrence-free survival rates
61 resection
62 resonance imaging
63 risk factors
64 scores
65 signal fraction
66 steatosis
67 study
68 survival outcomes
69 survival rate
70 usefulness
71 schema:name Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases
72 schema:pagination 1981-1989
73 schema:productId N122f5237ca8b4014bd4c5603e0616d62
74 Neb4d5f82344044dcb551b2f3b44e5d85
75 Nf09a6ac098204b25b0765175b91e00c4
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146805544
77 https://doi.org/10.1007/s00423-022-02482-z
78 schema:sdDatePublished 2022-11-24T21:09
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N15e9477e87de4b1bbd9227677adc14a2
81 schema:url https://doi.org/10.1007/s00423-022-02482-z
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N07aff00632e9464f824b3ea5860ecd9a rdf:first sg:person.0621146366.76
86 rdf:rest Nf8a814ebf30349d6890c134bd0d224d6
87 N122f5237ca8b4014bd4c5603e0616d62 schema:name dimensions_id
88 schema:value pub.1146805544
89 rdf:type schema:PropertyValue
90 N13dcc08ab78a4fefbfcf3aea1c655635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Liver Neoplasms
92 rdf:type schema:DefinedTerm
93 N15e9477e87de4b1bbd9227677adc14a2 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N2a29bdbc82fe4b78bc9a23212482d6a3 rdf:first sg:person.01340003061.54
96 rdf:rest Ne71e4deb5bb741f6bfe449e3e381408d
97 N453e1aed48624898af6ccc883146031b schema:volumeNumber 407
98 rdf:type schema:PublicationVolume
99 N54411a1d4ed64b17982dce02296ecc63 rdf:first sg:person.01344552466.53
100 rdf:rest N07aff00632e9464f824b3ea5860ecd9a
101 N55579e1eb89b46f8884b326c9d28025a rdf:first sg:person.0653527253.30
102 rdf:rest rdf:nil
103 N75835e2a260d42eab2df82d1ab0409a1 schema:issueNumber 5
104 rdf:type schema:PublicationIssue
105 N850d24d68309497e8dc8fb13b46ccf3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Prognosis
107 rdf:type schema:DefinedTerm
108 N8989ab8232e04278bc7b8c79acf248e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Colorectal Neoplasms
110 rdf:type schema:DefinedTerm
111 N8fe42efbd1214b13acff395a3e197722 rdf:first sg:person.01151022512.79
112 rdf:rest N955804953c824c5c8138920d2bdcd9aa
113 N955804953c824c5c8138920d2bdcd9aa rdf:first sg:person.01013120705.66
114 rdf:rest N54411a1d4ed64b17982dce02296ecc63
115 N97a8f009a7504602a02411c8d575550c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Magnetic Resonance Imaging
117 rdf:type schema:DefinedTerm
118 N9b79b3834bea437698755ce8068550b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Hepatectomy
120 rdf:type schema:DefinedTerm
121 Na018ef26fccf4dc9888a0b593028d211 rdf:first sg:person.0737651177.83
122 rdf:rest Nd14b598b62ed4d7e9318a16b25612cd1
123 Nd14b598b62ed4d7e9318a16b25612cd1 rdf:first sg:person.0777065206.13
124 rdf:rest N8fe42efbd1214b13acff395a3e197722
125 Ne71e4deb5bb741f6bfe449e3e381408d rdf:first sg:person.010363211172.04
126 rdf:rest N55579e1eb89b46f8884b326c9d28025a
127 Neb4d5f82344044dcb551b2f3b44e5d85 schema:name doi
128 schema:value 10.1007/s00423-022-02482-z
129 rdf:type schema:PropertyValue
130 Nec5284b4180a473fbbb571dbd4a93bdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Retrospective Studies
132 rdf:type schema:DefinedTerm
133 Nec8aed6816554024aee7916d9de39ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Neoplasm Recurrence, Local
135 rdf:type schema:DefinedTerm
136 Nf09a6ac098204b25b0765175b91e00c4 schema:name pubmed_id
137 schema:value 35362752
138 rdf:type schema:PropertyValue
139 Nf21936935dc64d949ebe5c010b5aec9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 Nf8a814ebf30349d6890c134bd0d224d6 rdf:first sg:person.01266546053.57
143 rdf:rest N2a29bdbc82fe4b78bc9a23212482d6a3
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
148 schema:name Clinical Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1371202 schema:issn 1435-2443
151 1435-2451
152 schema:name Langenbeck's Archives of Surgery
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01013120705.66 schema:affiliation grid-institutes:grid.136304.3
156 schema:familyName Furukawa
157 schema:givenName Katsunori
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013120705.66
159 rdf:type schema:Person
160 sg:person.010363211172.04 schema:affiliation grid-institutes:grid.136304.3
161 schema:familyName Matsubara
162 schema:givenName Hisahiro
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363211172.04
164 rdf:type schema:Person
165 sg:person.01151022512.79 schema:affiliation grid-institutes:grid.136304.3
166 schema:familyName Mishima
167 schema:givenName Takashi
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151022512.79
169 rdf:type schema:Person
170 sg:person.01266546053.57 schema:affiliation grid-institutes:grid.136304.3
171 schema:familyName Takano
172 schema:givenName Shigetsugu
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266546053.57
174 rdf:type schema:Person
175 sg:person.01340003061.54 schema:affiliation grid-institutes:grid.443371.6
176 schema:familyName Kawasaki
177 schema:givenName Yohei
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340003061.54
179 rdf:type schema:Person
180 sg:person.01344552466.53 schema:affiliation grid-institutes:grid.136304.3
181 schema:familyName Takayashiki
182 schema:givenName Tsukasa
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344552466.53
184 rdf:type schema:Person
185 sg:person.0621146366.76 schema:affiliation grid-institutes:grid.136304.3
186 schema:familyName Kuboki
187 schema:givenName Satoshi
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621146366.76
189 rdf:type schema:Person
190 sg:person.0653527253.30 schema:affiliation grid-institutes:grid.136304.3
191 schema:familyName Ohtsuka
192 schema:givenName Masayuki
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30
194 rdf:type schema:Person
195 sg:person.0737651177.83 schema:affiliation grid-institutes:grid.136304.3
196 schema:familyName Sakai
197 schema:givenName Nozomu
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737651177.83
199 rdf:type schema:Person
200 sg:person.0777065206.13 schema:affiliation grid-institutes:grid.136304.3
201 schema:familyName Hayano
202 schema:givenName Koichi
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777065206.13
204 rdf:type schema:Person
205 sg:pub.10.1007/s00268-017-4255-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091887259
206 https://doi.org/10.1007/s00268-017-4255-5
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s11748-020-01368-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126891820
209 https://doi.org/10.1007/s11748-020-01368-5
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/bjc.2016.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020337183
212 https://doi.org/10.1038/bjc.2016.155
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/s41598-020-63644-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1126659917
215 https://doi.org/10.1038/s41598-020-63644-x
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1471-2407-14-810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051796975
218 https://doi.org/10.1186/1471-2407-14-810
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s12885-017-3925-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403337
221 https://doi.org/10.1186/s12885-017-3925-x
222 rdf:type schema:CreativeWork
223 sg:pub.10.1245/s10434-014-3504-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020566781
224 https://doi.org/10.1245/s10434-014-3504-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1245/s10434-019-07934-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121836454
227 https://doi.org/10.1245/s10434-019-07934-3
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.136304.3 schema:alternateName Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
230 Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
231 schema:name Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
232 Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
233 rdf:type schema:Organization
234 grid-institutes:grid.443371.6 schema:alternateName Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
235 schema:name Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...