Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-01

AUTHORS

Nozomu Sakai, Koichi Hayano, Takashi Mishima, Katsunori Furukawa, Tsukasa Takayashiki, Satoshi Kuboki, Shigetsugu Takano, Yohei Kawasaki, Hisahiro Matsubara, Masayuki Ohtsuka

ABSTRACT

PurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM. More... »

PAGES

1981-1989

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z

DOI

http://dx.doi.org/10.1007/s00423-022-02482-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146805544

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35362752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Nozomu", 
        "id": "sg:person.0737651177.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737651177.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayano", 
        "givenName": "Koichi", 
        "id": "sg:person.0777065206.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777065206.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishima", 
        "givenName": "Takashi", 
        "id": "sg:person.01151022512.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151022512.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furukawa", 
        "givenName": "Katsunori", 
        "id": "sg:person.01013120705.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013120705.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayashiki", 
        "givenName": "Tsukasa", 
        "id": "sg:person.01344552466.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344552466.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuboki", 
        "givenName": "Satoshi", 
        "id": "sg:person.0621146366.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621146366.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takano", 
        "givenName": "Shigetsugu", 
        "id": "sg:person.01266546053.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266546053.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.443371.6", 
          "name": [
            "Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawasaki", 
        "givenName": "Yohei", 
        "id": "sg:person.01340003061.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340003061.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsubara", 
        "givenName": "Hisahiro", 
        "id": "sg:person.010363211172.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363211172.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136304.3", 
          "name": [
            "Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtsuka", 
        "givenName": "Masayuki", 
        "id": "sg:person.0653527253.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00268-017-4255-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091887259", 
          "https://doi.org/10.1007/s00268-017-4255-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-63644-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126659917", 
          "https://doi.org/10.1038/s41598-020-63644-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11748-020-01368-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126891820", 
          "https://doi.org/10.1007/s11748-020-01368-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-017-3925-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100403337", 
          "https://doi.org/10.1186/s12885-017-3925-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2016.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020337183", 
          "https://doi.org/10.1038/bjc.2016.155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-3504-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020566781", 
          "https://doi.org/10.1245/s10434-014-3504-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051796975", 
          "https://doi.org/10.1186/1471-2407-14-810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-019-07934-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121836454", 
          "https://doi.org/10.1245/s10434-019-07934-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-01", 
    "datePublishedReg": "2022-04-01", 
    "description": "Abstract\nPurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction\u2009\u2265\u20090.0258, which was significantly higher than that in patients with fat signal fraction\u2009<\u20090.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction\u2009<\u20090.0258 than in those with fat signal fraction\u2009\u2265\u20090.0258. Multivariate analyses revealed that fat signal fraction\u2009\u2265\u20090.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00423-022-02482-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1371202", 
        "issn": [
          "1435-2443", 
          "1435-2451"
        ], 
        "name": "Langenbeck's Archives of Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "keywords": [
      "colorectal liver metastases", 
      "magnetic resonance imaging", 
      "fat signal fraction", 
      "initial hepatectomy", 
      "hepatic recurrence", 
      "liver metastases", 
      "hepatic steatosis", 
      "nonalcoholic fatty liver disease activity score", 
      "recurrence-free survival rates", 
      "Disease Activity Score", 
      "liver-spleen ratio", 
      "hepatic recurrence rate", 
      "independent risk factor", 
      "hepatic resection", 
      "signal fraction", 
      "survival outcomes", 
      "activity score", 
      "recurrence rate", 
      "risk factors", 
      "medical records", 
      "patients", 
      "recurrence", 
      "survival rate", 
      "multivariate analysis", 
      "hepatectomy", 
      "resonance imaging", 
      "PurposeThe effects", 
      "steatosis", 
      "metastasis", 
      "resection", 
      "outcomes", 
      "scores", 
      "rate", 
      "imaging", 
      "effect", 
      "fraction", 
      "factors", 
      "records", 
      "study", 
      "usefulness", 
      "development", 
      "ratio", 
      "analysis"
    ], 
    "name": "Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases", 
    "pagination": "1981-1989", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146805544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00423-022-02482-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35362752"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00423-022-02482-z", 
      "https://app.dimensions.ai/details/publication/pub.1146805544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_929.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00423-022-02482-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00423-022-02482-z'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      84 URIs      68 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00423-022-02482-z schema:about N0f5488db743d4f278e7a3aba42ae0c38
2 N6b8d440ee862467598b813169f3b051f
3 N75e4784d7bf44915bc34413c7ce754f4
4 Na54c2627947345929468aaca9d27459a
5 Nc99b24e7891e406f8bc6ee999aa0451b
6 Nd10179e73b8d4b77b011609a72c4f60a
7 Nf3d4e1bfc407414fa2f31c7c58a769ac
8 Nf98cc67c7e9a4a8bb2da78ac84c8b85b
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N27d692ea2c594a4d839ec3659b31422d
12 schema:citation sg:pub.10.1007/s00268-017-4255-5
13 sg:pub.10.1007/s11748-020-01368-5
14 sg:pub.10.1038/bjc.2016.155
15 sg:pub.10.1038/s41598-020-63644-x
16 sg:pub.10.1186/1471-2407-14-810
17 sg:pub.10.1186/s12885-017-3925-x
18 sg:pub.10.1245/s10434-014-3504-1
19 sg:pub.10.1245/s10434-019-07934-3
20 schema:datePublished 2022-04-01
21 schema:datePublishedReg 2022-04-01
22 schema:description Abstract PurposeThe effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.MethodsBetween January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.ResultsThe fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence.ConclusionThe fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N15cb112b985f4cf6b85d8c8d246e9a0e
26 Nb291dcf37bc943d7a5b208dd4fcfb58f
27 sg:journal.1371202
28 schema:keywords Disease Activity Score
29 PurposeThe effects
30 activity score
31 analysis
32 colorectal liver metastases
33 development
34 effect
35 factors
36 fat signal fraction
37 fraction
38 hepatectomy
39 hepatic recurrence
40 hepatic recurrence rate
41 hepatic resection
42 hepatic steatosis
43 imaging
44 independent risk factor
45 initial hepatectomy
46 liver metastases
47 liver-spleen ratio
48 magnetic resonance imaging
49 medical records
50 metastasis
51 multivariate analysis
52 nonalcoholic fatty liver disease activity score
53 outcomes
54 patients
55 rate
56 ratio
57 records
58 recurrence
59 recurrence rate
60 recurrence-free survival rates
61 resection
62 resonance imaging
63 risk factors
64 scores
65 signal fraction
66 steatosis
67 study
68 survival outcomes
69 survival rate
70 usefulness
71 schema:name Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases
72 schema:pagination 1981-1989
73 schema:productId N6aa5e37fbdf84855a91af2154456186e
74 N85315cddb8064133a24818d4a9ab0fde
75 N8cd662e2962e42a7a3ff13986aca29f3
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146805544
77 https://doi.org/10.1007/s00423-022-02482-z
78 schema:sdDatePublished 2022-09-02T16:07
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N793090ce2cb049a6a6d5c8d61a13bebd
81 schema:url https://doi.org/10.1007/s00423-022-02482-z
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0a9b0f631c774772bcff7fef2fe569d8 rdf:first sg:person.010363211172.04
86 rdf:rest Nc46f1ae73b184eb2af381021b8564198
87 N0f5488db743d4f278e7a3aba42ae0c38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Hepatectomy
89 rdf:type schema:DefinedTerm
90 N15cb112b985f4cf6b85d8c8d246e9a0e schema:issueNumber 5
91 rdf:type schema:PublicationIssue
92 N169735f75b234ce28ca9d31827d0273c rdf:first sg:person.01151022512.79
93 rdf:rest N3a8cc6dd15fa4a5ea17169cb5c0b1c48
94 N27d692ea2c594a4d839ec3659b31422d rdf:first sg:person.0737651177.83
95 rdf:rest N2e9ce632d7e74193aa6a7b90a23f42be
96 N2e9ce632d7e74193aa6a7b90a23f42be rdf:first sg:person.0777065206.13
97 rdf:rest N169735f75b234ce28ca9d31827d0273c
98 N3a8cc6dd15fa4a5ea17169cb5c0b1c48 rdf:first sg:person.01013120705.66
99 rdf:rest N487ae1bfbe81456b9e0a06262cd30ea1
100 N487ae1bfbe81456b9e0a06262cd30ea1 rdf:first sg:person.01344552466.53
101 rdf:rest Nef81f9d1b14b4d779ebc5f1874c035ee
102 N6aa5e37fbdf84855a91af2154456186e schema:name pubmed_id
103 schema:value 35362752
104 rdf:type schema:PropertyValue
105 N6b8d440ee862467598b813169f3b051f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Colorectal Neoplasms
107 rdf:type schema:DefinedTerm
108 N72d4b961767748edabe052e9bc103dbb rdf:first sg:person.01340003061.54
109 rdf:rest N0a9b0f631c774772bcff7fef2fe569d8
110 N75e4784d7bf44915bc34413c7ce754f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Prognosis
112 rdf:type schema:DefinedTerm
113 N793090ce2cb049a6a6d5c8d61a13bebd schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N85315cddb8064133a24818d4a9ab0fde schema:name dimensions_id
116 schema:value pub.1146805544
117 rdf:type schema:PropertyValue
118 N8cd662e2962e42a7a3ff13986aca29f3 schema:name doi
119 schema:value 10.1007/s00423-022-02482-z
120 rdf:type schema:PropertyValue
121 N9345f9b05a174c0ba9c2d9ce362993e8 rdf:first sg:person.01266546053.57
122 rdf:rest N72d4b961767748edabe052e9bc103dbb
123 Na54c2627947345929468aaca9d27459a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Liver Neoplasms
125 rdf:type schema:DefinedTerm
126 Nb291dcf37bc943d7a5b208dd4fcfb58f schema:volumeNumber 407
127 rdf:type schema:PublicationVolume
128 Nc46f1ae73b184eb2af381021b8564198 rdf:first sg:person.0653527253.30
129 rdf:rest rdf:nil
130 Nc99b24e7891e406f8bc6ee999aa0451b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Neoplasm Recurrence, Local
132 rdf:type schema:DefinedTerm
133 Nd10179e73b8d4b77b011609a72c4f60a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 Nef81f9d1b14b4d779ebc5f1874c035ee rdf:first sg:person.0621146366.76
137 rdf:rest N9345f9b05a174c0ba9c2d9ce362993e8
138 Nf3d4e1bfc407414fa2f31c7c58a769ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Magnetic Resonance Imaging
140 rdf:type schema:DefinedTerm
141 Nf98cc67c7e9a4a8bb2da78ac84c8b85b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Retrospective Studies
143 rdf:type schema:DefinedTerm
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
148 schema:name Clinical Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1371202 schema:issn 1435-2443
151 1435-2451
152 schema:name Langenbeck's Archives of Surgery
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01013120705.66 schema:affiliation grid-institutes:grid.136304.3
156 schema:familyName Furukawa
157 schema:givenName Katsunori
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013120705.66
159 rdf:type schema:Person
160 sg:person.010363211172.04 schema:affiliation grid-institutes:grid.136304.3
161 schema:familyName Matsubara
162 schema:givenName Hisahiro
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363211172.04
164 rdf:type schema:Person
165 sg:person.01151022512.79 schema:affiliation grid-institutes:grid.136304.3
166 schema:familyName Mishima
167 schema:givenName Takashi
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151022512.79
169 rdf:type schema:Person
170 sg:person.01266546053.57 schema:affiliation grid-institutes:grid.136304.3
171 schema:familyName Takano
172 schema:givenName Shigetsugu
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266546053.57
174 rdf:type schema:Person
175 sg:person.01340003061.54 schema:affiliation grid-institutes:grid.443371.6
176 schema:familyName Kawasaki
177 schema:givenName Yohei
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340003061.54
179 rdf:type schema:Person
180 sg:person.01344552466.53 schema:affiliation grid-institutes:grid.136304.3
181 schema:familyName Takayashiki
182 schema:givenName Tsukasa
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344552466.53
184 rdf:type schema:Person
185 sg:person.0621146366.76 schema:affiliation grid-institutes:grid.136304.3
186 schema:familyName Kuboki
187 schema:givenName Satoshi
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621146366.76
189 rdf:type schema:Person
190 sg:person.0653527253.30 schema:affiliation grid-institutes:grid.136304.3
191 schema:familyName Ohtsuka
192 schema:givenName Masayuki
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30
194 rdf:type schema:Person
195 sg:person.0737651177.83 schema:affiliation grid-institutes:grid.136304.3
196 schema:familyName Sakai
197 schema:givenName Nozomu
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737651177.83
199 rdf:type schema:Person
200 sg:person.0777065206.13 schema:affiliation grid-institutes:grid.136304.3
201 schema:familyName Hayano
202 schema:givenName Koichi
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777065206.13
204 rdf:type schema:Person
205 sg:pub.10.1007/s00268-017-4255-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091887259
206 https://doi.org/10.1007/s00268-017-4255-5
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s11748-020-01368-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126891820
209 https://doi.org/10.1007/s11748-020-01368-5
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/bjc.2016.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020337183
212 https://doi.org/10.1038/bjc.2016.155
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/s41598-020-63644-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1126659917
215 https://doi.org/10.1038/s41598-020-63644-x
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1471-2407-14-810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051796975
218 https://doi.org/10.1186/1471-2407-14-810
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/s12885-017-3925-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403337
221 https://doi.org/10.1186/s12885-017-3925-x
222 rdf:type schema:CreativeWork
223 sg:pub.10.1245/s10434-014-3504-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020566781
224 https://doi.org/10.1245/s10434-014-3504-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1245/s10434-019-07934-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121836454
227 https://doi.org/10.1245/s10434-019-07934-3
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.136304.3 schema:alternateName Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
230 Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
231 schema:name Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
232 Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
233 rdf:type schema:Organization
234 grid-institutes:grid.443371.6 schema:alternateName Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
235 schema:name Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...