Ontology type: schema:ScholarlyArticle
2002-01
AUTHORSP. Gaussier, A. Revel, J. P. Banquet, V. Babeau
ABSTRACTThe goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like "place cells" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, "place cells" or "view cells" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment. More... »
PAGES15-28
http://scigraph.springernature.com/pub.10.1007/s004220100269
DOIhttp://dx.doi.org/10.1007/s004220100269
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015097071
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11918209
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain Mapping",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cognition",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Hippocampus",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Learning",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Memory",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Neurological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neurons",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
],
"type": "Organization"
},
"familyName": "Gaussier",
"givenName": "P.",
"id": "sg:person.01041272554.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
],
"type": "Organization"
},
"familyName": "Revel",
"givenName": "A.",
"id": "sg:person.010634335021.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634335021.86"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Neurosciences and Modelisation Institute, CREARE, Jussieu, Paris, France, FR"
],
"type": "Organization"
},
"familyName": "Banquet",
"givenName": "J. P.",
"id": "sg:person.0773157354.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
],
"type": "Organization"
},
"familyName": "Babeau",
"givenName": "V.",
"type": "Person"
}
],
"datePublished": "2002-01",
"datePublishedReg": "2002-01-01",
"description": "The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like \"place cells\" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, \"place cells\" or \"view cells\" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment.",
"genre": "research_article",
"id": "sg:pub.10.1007/s004220100269",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1081741",
"issn": [
"0340-1200",
"1432-0770"
],
"name": "Biological Cybernetics",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "86"
}
],
"name": "From view cells and place cells to cognitive map learning: processing stages of the hippocampal system",
"pagination": "15-28",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"47ed6e65cc2f76805fcd2e56052cc782ce050eac03114cb5f13c3958c46e4d6a"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11918209"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"7502533"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s004220100269"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015097071"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s004220100269",
"https://app.dimensions.ai/details/publication/pub.1015097071"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000487.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s004220100269"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
20 PREDICATES
37 URIs
29 LITERALS
17 BLANK NODES