From view cells and place cells to cognitive map learning: processing stages of the hippocampal system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

P. Gaussier, A. Revel, J. P. Banquet, V. Babeau

ABSTRACT

The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like "place cells" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, "place cells" or "view cells" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment. More... »

PAGES

15-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004220100269

DOI

http://dx.doi.org/10.1007/s004220100269

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015097071

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11918209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "P.", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Revel", 
        "givenName": "A.", 
        "id": "sg:person.010634335021.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634335021.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Neurosciences and Modelisation Institute, CREARE, Jussieu, Paris, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banquet", 
        "givenName": "J. P.", 
        "id": "sg:person.0773157354.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babeau", 
        "givenName": "V.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like \"place cells\" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, \"place cells\" or \"view cells\" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004220100269", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "From view cells and place cells to cognitive map learning: processing stages of the hippocampal system", 
    "pagination": "15-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47ed6e65cc2f76805fcd2e56052cc782ce050eac03114cb5f13c3958c46e4d6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11918209"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004220100269"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015097071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004220100269", 
      "https://app.dimensions.ai/details/publication/pub.1015097071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004220100269"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      20 PREDICATES      37 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004220100269 schema:about N01bba75db4ea4d5dab4a2556df2ac208
2 N2e2b2fe794f747f3b5acca0748b72e9e
3 N7347f8f59730459a864071c141c33d5d
4 Nb23ffeb42b34478e92d0fa557c7cafd7
5 Nbacd290e111b44e7a02e1ef60d0269fe
6 Nbaf0f9ee6d6d4382a5fe54d154a9324a
7 Nca39fd2453744a0abc8b31994bc5547a
8 Nd40ead83caa34cdb8d62d169e9a93393
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N71754317c51042cca5ebf1fe98d88a41
12 schema:datePublished 2002-01
13 schema:datePublishedReg 2002-01-01
14 schema:description The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like "place cells" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, "place cells" or "view cells" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N24daf691d41948638fa681007df29197
19 Nf5e243e38181483fa4e50b76b07e5bde
20 sg:journal.1081741
21 schema:name From view cells and place cells to cognitive map learning: processing stages of the hippocampal system
22 schema:pagination 15-28
23 schema:productId N0e064ac7ce32412692764630e9d4a5ab
24 N62621a68267548e3bcefc2e61d2ca95a
25 Nd2fea345c2cb4fc6880f0e1d171eb620
26 Nea8126b80b6e4822b15c267324ec741f
27 Nf41a53fc9c3944e694e0dbf1d24eb2d3
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015097071
29 https://doi.org/10.1007/s004220100269
30 schema:sdDatePublished 2019-04-10T15:45
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N350ad0ee524f47b597e709dd9f03c39c
33 schema:url http://link.springer.com/10.1007/s004220100269
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N01bba75db4ea4d5dab4a2556df2ac208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
38 schema:name Memory
39 rdf:type schema:DefinedTerm
40 N0e064ac7ce32412692764630e9d4a5ab schema:name doi
41 schema:value 10.1007/s004220100269
42 rdf:type schema:PropertyValue
43 N1ba1a44916cd44a2a260b9ffab90ed79 rdf:first Nfb0416a803c44dc79da5fc260ed0f73c
44 rdf:rest rdf:nil
45 N1dbb90b241ad43c6a33345aa5c1f4986 rdf:first sg:person.0773157354.72
46 rdf:rest N1ba1a44916cd44a2a260b9ffab90ed79
47 N24daf691d41948638fa681007df29197 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N2aeb48f39e5f459292b41b7c1c3a88f4 rdf:first sg:person.010634335021.86
50 rdf:rest N1dbb90b241ad43c6a33345aa5c1f4986
51 N2e2b2fe794f747f3b5acca0748b72e9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Neurons
53 rdf:type schema:DefinedTerm
54 N350ad0ee524f47b597e709dd9f03c39c schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N62621a68267548e3bcefc2e61d2ca95a schema:name dimensions_id
57 schema:value pub.1015097071
58 rdf:type schema:PropertyValue
59 N71754317c51042cca5ebf1fe98d88a41 rdf:first sg:person.01041272554.05
60 rdf:rest N2aeb48f39e5f459292b41b7c1c3a88f4
61 N7347f8f59730459a864071c141c33d5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Cognition
63 rdf:type schema:DefinedTerm
64 N79fc9419ae774bc9a66c416df1fd2297 schema:name Neurosciences and Modelisation Institute, CREARE, Jussieu, Paris, France, FR
65 rdf:type schema:Organization
66 Nb23ffeb42b34478e92d0fa557c7cafd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Models, Neurological
68 rdf:type schema:DefinedTerm
69 Nbacd290e111b44e7a02e1ef60d0269fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Animals
71 rdf:type schema:DefinedTerm
72 Nbaf0f9ee6d6d4382a5fe54d154a9324a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Brain Mapping
74 rdf:type schema:DefinedTerm
75 Nca39fd2453744a0abc8b31994bc5547a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Hippocampus
77 rdf:type schema:DefinedTerm
78 Nd2fea345c2cb4fc6880f0e1d171eb620 schema:name readcube_id
79 schema:value 47ed6e65cc2f76805fcd2e56052cc782ce050eac03114cb5f13c3958c46e4d6a
80 rdf:type schema:PropertyValue
81 Nd40ead83caa34cdb8d62d169e9a93393 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Learning
83 rdf:type schema:DefinedTerm
84 Nea8126b80b6e4822b15c267324ec741f schema:name nlm_unique_id
85 schema:value 7502533
86 rdf:type schema:PropertyValue
87 Nf41a53fc9c3944e694e0dbf1d24eb2d3 schema:name pubmed_id
88 schema:value 11918209
89 rdf:type schema:PropertyValue
90 Nf5e243e38181483fa4e50b76b07e5bde schema:volumeNumber 86
91 rdf:type schema:PublicationVolume
92 Nfb0416a803c44dc79da5fc260ed0f73c schema:affiliation https://www.grid.ac/institutes/grid.7901.f
93 schema:familyName Babeau
94 schema:givenName V.
95 rdf:type schema:Person
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:journal.1081741 schema:issn 0340-1200
103 1432-0770
104 schema:name Biological Cybernetics
105 rdf:type schema:Periodical
106 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
107 schema:familyName Gaussier
108 schema:givenName P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
110 rdf:type schema:Person
111 sg:person.010634335021.86 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
112 schema:familyName Revel
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634335021.86
115 rdf:type schema:Person
116 sg:person.0773157354.72 schema:affiliation N79fc9419ae774bc9a66c416df1fd2297
117 schema:familyName Banquet
118 schema:givenName J. P.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72
120 rdf:type schema:Person
121 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
122 schema:name Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...