From view cells and place cells to cognitive map learning: processing stages of the hippocampal system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

P. Gaussier, A. Revel, J. P. Banquet, V. Babeau

ABSTRACT

The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like "place cells" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, "place cells" or "view cells" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment. More... »

PAGES

15-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004220100269

DOI

http://dx.doi.org/10.1007/s004220100269

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015097071

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11918209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "P.", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Revel", 
        "givenName": "A.", 
        "id": "sg:person.010634335021.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634335021.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Neurosciences and Modelisation Institute, CREARE, Jussieu, Paris, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banquet", 
        "givenName": "J. P.", 
        "id": "sg:person.0773157354.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babeau", 
        "givenName": "V.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like \"place cells\" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, \"place cells\" or \"view cells\" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004220100269", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "From view cells and place cells to cognitive map learning: processing stages of the hippocampal system", 
    "pagination": "15-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47ed6e65cc2f76805fcd2e56052cc782ce050eac03114cb5f13c3958c46e4d6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11918209"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004220100269"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015097071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004220100269", 
      "https://app.dimensions.ai/details/publication/pub.1015097071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004220100269"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004220100269'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      20 PREDICATES      37 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004220100269 schema:about N263c74f4a495406ebf5610726081fc19
2 N32df79d3212e440ca38dc1926c0f3a30
3 N618321aa63c747018f44cb33888cc25d
4 N697b9f9f3b9c4c7bae63104a6dc7eb88
5 N703334df41dc4642b2ac1fc3fc821f19
6 N777fdf0421e44e14ade58d992996f9cd
7 N940040c77515403e92b6b38cd0026a5d
8 Nf4f573caff3949e5873b2f472b132879
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author Nfc0b14c184fb417b9d3a7f898c56da77
12 schema:datePublished 2002-01
13 schema:datePublishedReg 2002-01-01
14 schema:description The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like "place cells" with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, "place cells" or "view cells" are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory-motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2cc3008ca9e3446c81945b1276631662
19 Nba87968261184d9190980903f9ae1bad
20 sg:journal.1081741
21 schema:name From view cells and place cells to cognitive map learning: processing stages of the hippocampal system
22 schema:pagination 15-28
23 schema:productId N14db0f790833450d9fc15060f0de789a
24 N7ee2cf8ca5a84b34857b2d2709040586
25 N8b55b119c75940aa9024a4cc1c633a19
26 Na472a6a64a4d47d0867ebc689beaa51a
27 Ne91c5b70ceb9439c8c7a66bee3f7fae7
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015097071
29 https://doi.org/10.1007/s004220100269
30 schema:sdDatePublished 2019-04-10T15:45
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N8bb77e1d65dd40678034f7508e9d79d4
33 schema:url http://link.springer.com/10.1007/s004220100269
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N14db0f790833450d9fc15060f0de789a schema:name readcube_id
38 schema:value 47ed6e65cc2f76805fcd2e56052cc782ce050eac03114cb5f13c3958c46e4d6a
39 rdf:type schema:PropertyValue
40 N263c74f4a495406ebf5610726081fc19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
41 schema:name Brain Mapping
42 rdf:type schema:DefinedTerm
43 N26b1db4ba3ca4bb9a03777f94ee7b9c5 rdf:first N95d0135fa24a49d78671bb4f6c8aae5f
44 rdf:rest rdf:nil
45 N2cc3008ca9e3446c81945b1276631662 schema:volumeNumber 86
46 rdf:type schema:PublicationVolume
47 N32df79d3212e440ca38dc1926c0f3a30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Hippocampus
49 rdf:type schema:DefinedTerm
50 N3d5bf2dcbb68400b901e190a18b8326a rdf:first sg:person.0773157354.72
51 rdf:rest N26b1db4ba3ca4bb9a03777f94ee7b9c5
52 N518b689d27a24474aa4e5be8d0d8d344 schema:name Neurosciences and Modelisation Institute, CREARE, Jussieu, Paris, France, FR
53 rdf:type schema:Organization
54 N58c121c4e8274ce7852979ba2b0ce886 rdf:first sg:person.010634335021.86
55 rdf:rest N3d5bf2dcbb68400b901e190a18b8326a
56 N618321aa63c747018f44cb33888cc25d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Learning
58 rdf:type schema:DefinedTerm
59 N697b9f9f3b9c4c7bae63104a6dc7eb88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Models, Neurological
61 rdf:type schema:DefinedTerm
62 N703334df41dc4642b2ac1fc3fc821f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Neurons
64 rdf:type schema:DefinedTerm
65 N777fdf0421e44e14ade58d992996f9cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Cognition
67 rdf:type schema:DefinedTerm
68 N7ee2cf8ca5a84b34857b2d2709040586 schema:name dimensions_id
69 schema:value pub.1015097071
70 rdf:type schema:PropertyValue
71 N8b55b119c75940aa9024a4cc1c633a19 schema:name nlm_unique_id
72 schema:value 7502533
73 rdf:type schema:PropertyValue
74 N8bb77e1d65dd40678034f7508e9d79d4 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N940040c77515403e92b6b38cd0026a5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Animals
78 rdf:type schema:DefinedTerm
79 N95d0135fa24a49d78671bb4f6c8aae5f schema:affiliation https://www.grid.ac/institutes/grid.7901.f
80 schema:familyName Babeau
81 schema:givenName V.
82 rdf:type schema:Person
83 Na472a6a64a4d47d0867ebc689beaa51a schema:name doi
84 schema:value 10.1007/s004220100269
85 rdf:type schema:PropertyValue
86 Nba87968261184d9190980903f9ae1bad schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Ne91c5b70ceb9439c8c7a66bee3f7fae7 schema:name pubmed_id
89 schema:value 11918209
90 rdf:type schema:PropertyValue
91 Nf4f573caff3949e5873b2f472b132879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Memory
93 rdf:type schema:DefinedTerm
94 Nfc0b14c184fb417b9d3a7f898c56da77 rdf:first sg:person.01041272554.05
95 rdf:rest N58c121c4e8274ce7852979ba2b0ce886
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:journal.1081741 schema:issn 0340-1200
103 1432-0770
104 schema:name Biological Cybernetics
105 rdf:type schema:Periodical
106 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
107 schema:familyName Gaussier
108 schema:givenName P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
110 rdf:type schema:Person
111 sg:person.010634335021.86 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
112 schema:familyName Revel
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634335021.86
115 rdf:type schema:Person
116 sg:person.0773157354.72 schema:affiliation N518b689d27a24474aa4e5be8d0d8d344
117 schema:familyName Banquet
118 schema:givenName J. P.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72
120 rdf:type schema:Person
121 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
122 schema:name Neuro-cybernetic team, Image and Signal Processing Laboratory (ETIS), Cergy Pontoise University and ENSEA, 6 av du Ponceau, 95014 Cergy Pontoise, France, FR
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...