A mathematical model of adaptive behavior in quadruped locomotion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Satoshi Ito, Hideo Yuasa, Zhi-wei Luo, Masami Ito, Dai Yanagihara

ABSTRACT

Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have related that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation. More... »

PAGES

337-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004220050438

DOI

http://dx.doi.org/10.1007/s004220050438

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020234918

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9691263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Movement and Sports Science", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Behavior, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decerebrate State", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gait", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Locomotion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Anagahora,  Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Satoshi", 
        "id": "sg:person.014161701461.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161701461.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Anagahora,  Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuasa", 
        "givenName": "Hideo", 
        "id": "sg:person.015256415065.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256415065.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Anagahora,  Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Zhi-wei", 
        "id": "sg:person.012760320633.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760320633.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Anagahora,  Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Masami", 
        "id": "sg:person.013037773365.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013037773365.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.474690.8", 
          "name": [
            "Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagihara", 
        "givenName": "Dai", 
        "id": "sg:person.010372406661.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372406661.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have related that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004220050438", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "A mathematical model of adaptive behavior in quadruped locomotion", 
    "pagination": "337-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6069d273e331d9dc9d237b53dd0375752f9838b3ec3026a8a37873725cc61ec3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9691263"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004220050438"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020234918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004220050438", 
      "https://app.dimensions.ai/details/publication/pub.1020234918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004220050438"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004220050438'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004220050438'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004220050438'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004220050438'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004220050438 schema:about N71d0bf5d258042fbbd812c5e96b85643
2 N783b65ac68614d7d9bbff9f07ae5ae3e
3 Na329a5e540ef4d6aa24647ae1c7b1921
4 Nb4dfb996acfb4b8cba4001b755cbb392
5 Nb727bdba77574425b79e73b9066f0637
6 Ncc8067a0d9b44905b8c7dd2da4bf5007
7 Nccc0f5998cf644ebb90cde683ca8e526
8 Ne07792030b9947a0adca5f58d2769b3f
9 Nfb6abb1e2f4748baaa54b23ba97c8fe3
10 Nfba1cff20a6244d3a2822c6d0ebe4b5e
11 anzsrc-for:11
12 anzsrc-for:1106
13 schema:author N97c76d08170d48e8a8b6a2a633a4a6a1
14 schema:datePublished 1998-06
15 schema:datePublishedReg 1998-06-01
16 schema:description Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have related that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N29dda6d7483a4e918005b817ba3ea614
21 N50e9cc5091004ce385ee5ff1152bb5f7
22 sg:journal.1081741
23 schema:name A mathematical model of adaptive behavior in quadruped locomotion
24 schema:pagination 337-347
25 schema:productId N3479391cfe5d47a29c72f2293f7597e3
26 Nc9e2fd96b4244b75a1dd64b451638ae6
27 Ncc9c8695a419412f9576ded9f9a1d91e
28 Ne06504ab1a0e481382d1761254d710f3
29 Ne335d94963d74c34847b8f602c3a58d0
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020234918
31 https://doi.org/10.1007/s004220050438
32 schema:sdDatePublished 2019-04-11T01:53
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N05148065cd3e456aa9e579a1b8557fcf
35 schema:url http://link.springer.com/10.1007/s004220050438
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N05148065cd3e456aa9e579a1b8557fcf schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N29dda6d7483a4e918005b817ba3ea614 schema:volumeNumber 78
42 rdf:type schema:PublicationVolume
43 N3479391cfe5d47a29c72f2293f7597e3 schema:name readcube_id
44 schema:value 6069d273e331d9dc9d237b53dd0375752f9838b3ec3026a8a37873725cc61ec3
45 rdf:type schema:PropertyValue
46 N392165ec30b14fb5a7ea83733ef333c0 rdf:first sg:person.012760320633.31
47 rdf:rest N8d57101b12724bc88298d3082111a35a
48 N50e9cc5091004ce385ee5ff1152bb5f7 schema:issueNumber 5
49 rdf:type schema:PublicationIssue
50 N535d24e33065473a8f45000096863f2f rdf:first sg:person.010372406661.88
51 rdf:rest rdf:nil
52 N71d0bf5d258042fbbd812c5e96b85643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Cybernetics
54 rdf:type schema:DefinedTerm
55 N783b65ac68614d7d9bbff9f07ae5ae3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Animals
57 rdf:type schema:DefinedTerm
58 N8d57101b12724bc88298d3082111a35a rdf:first sg:person.013037773365.25
59 rdf:rest N535d24e33065473a8f45000096863f2f
60 N97c76d08170d48e8a8b6a2a633a4a6a1 rdf:first sg:person.014161701461.13
61 rdf:rest Nc37db4e4f10f4de99a36a704d6e26950
62 Na329a5e540ef4d6aa24647ae1c7b1921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Locomotion
64 rdf:type schema:DefinedTerm
65 Nb4dfb996acfb4b8cba4001b755cbb392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Gait
67 rdf:type schema:DefinedTerm
68 Nb727bdba77574425b79e73b9066f0637 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Biological
70 rdf:type schema:DefinedTerm
71 Nc37db4e4f10f4de99a36a704d6e26950 rdf:first sg:person.015256415065.91
72 rdf:rest N392165ec30b14fb5a7ea83733ef333c0
73 Nc9e2fd96b4244b75a1dd64b451638ae6 schema:name dimensions_id
74 schema:value pub.1020234918
75 rdf:type schema:PropertyValue
76 Ncc8067a0d9b44905b8c7dd2da4bf5007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Behavior, Animal
78 rdf:type schema:DefinedTerm
79 Ncc9c8695a419412f9576ded9f9a1d91e schema:name pubmed_id
80 schema:value 9691263
81 rdf:type schema:PropertyValue
82 Nccc0f5998cf644ebb90cde683ca8e526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Cats
84 rdf:type schema:DefinedTerm
85 Ne06504ab1a0e481382d1761254d710f3 schema:name doi
86 schema:value 10.1007/s004220050438
87 rdf:type schema:PropertyValue
88 Ne07792030b9947a0adca5f58d2769b3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Adaptation, Physiological
90 rdf:type schema:DefinedTerm
91 Ne335d94963d74c34847b8f602c3a58d0 schema:name nlm_unique_id
92 schema:value 7502533
93 rdf:type schema:PropertyValue
94 Nfb6abb1e2f4748baaa54b23ba97c8fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mathematics
96 rdf:type schema:DefinedTerm
97 Nfba1cff20a6244d3a2822c6d0ebe4b5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Decerebrate State
99 rdf:type schema:DefinedTerm
100 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
101 schema:name Medical and Health Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
104 schema:name Human Movement and Sports Science
105 rdf:type schema:DefinedTerm
106 sg:journal.1081741 schema:issn 0340-1200
107 1432-0770
108 schema:name Biological Cybernetics
109 rdf:type schema:Periodical
110 sg:person.010372406661.88 schema:affiliation https://www.grid.ac/institutes/grid.474690.8
111 schema:familyName Yanagihara
112 schema:givenName Dai
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372406661.88
114 rdf:type schema:Person
115 sg:person.012760320633.31 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
116 schema:familyName Luo
117 schema:givenName Zhi-wei
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760320633.31
119 rdf:type schema:Person
120 sg:person.013037773365.25 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
121 schema:familyName Ito
122 schema:givenName Masami
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013037773365.25
124 rdf:type schema:Person
125 sg:person.014161701461.13 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
126 schema:familyName Ito
127 schema:givenName Satoshi
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161701461.13
129 rdf:type schema:Person
130 sg:person.015256415065.91 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
131 schema:familyName Yuasa
132 schema:givenName Hideo
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256415065.91
134 rdf:type schema:Person
135 https://www.grid.ac/institutes/grid.474690.8 schema:alternateName RIKEN Center for Brain Science
136 schema:name Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan, JP
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
139 schema:name Bio-mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, JP
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...