An unsupervised neuromorphic clustering algorithm. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-03

AUTHORS

Alan Diamond, Michael Schmuker, Thomas Nowotny

ABSTRACT

Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use these systems in applications, we need "neuromorphic algorithms" that can run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent plasticity and lateral inhibition to perform unsupervised clustering. With this model, time-invariant, rate-coded datasets can be mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware. We developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-019-00797-7

DOI

http://dx.doi.org/10.1007/s00422-019-00797-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113182355

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30944983


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sussex", 
          "id": "https://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diamond", 
        "givenName": "Alan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hertfordshire", 
          "id": "https://www.grid.ac/institutes/grid.5846.f", 
          "name": [
            "Department of Computer Science, University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmuker", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sussex", 
          "id": "https://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK. t.nowotny@sussex.ac.uk."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nowotny", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005021843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep18854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010316138", 
          "https://doi.org/10.1038/srep18854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0705683104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010490569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2007.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010702161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383076a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183215", 
          "https://doi.org/10.1038/383076a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016706883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2015.00491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023648663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.041922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025528849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.041922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025528849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.2264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026396107", 
          "https://doi.org/10.1038/nn.2264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/neuro.11.011.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029035579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-005-0019-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033508819", 
          "https://doi.org/10.1007/s00422-005-0019-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-005-0019-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033508819", 
          "https://doi.org/10.1007/s00422-005-0019-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmps.1999.1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033636267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.24.1.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1303053111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034118717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(98)00040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035831248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/frobt.2014.00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036088562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0230-16.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039183899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.06-08-804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039891861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3190/11/2/026002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043575191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.668899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2014.2313565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2012.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061535275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvlsi.2013.2294916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061817161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-24-10464.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083361411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbcas.2017.2759700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092524939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2008.4634199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093827356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2010.5596364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094486518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2010.5536970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095073463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mm.2018.112130359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2018.00052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2018.00052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105478019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2018.00941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110575217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2018.00941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110575217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2018.00941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110575217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2018.00941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110575217"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-03", 
    "datePublishedReg": "2019-04-03", 
    "description": "Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use these systems in applications, we need \"neuromorphic algorithms\" that can run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent plasticity and lateral inhibition to perform unsupervised clustering. With this model, time-invariant, rate-coded datasets can be mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware. We developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-019-00797-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3796504", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }
    ], 
    "name": "An unsupervised neuromorphic clustering algorithm.", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30944983"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-019-00797-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113182355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-019-00797-7", 
      "https://app.dimensions.ai/details/publication/pub.1113182355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-019-00797-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-019-00797-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-019-00797-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-019-00797-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-019-00797-7'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      20 PREDICATES      58 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-019-00797-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2ce105c7821249179549449cd7d685a2
4 schema:citation sg:pub.10.1007/s00422-005-0019-7
5 sg:pub.10.1038/383076a0
6 sg:pub.10.1038/nn.2264
7 sg:pub.10.1038/srep18854
8 https://doi.org/10.1006/jmps.1999.1280
9 https://doi.org/10.1016/0005-1098(78)90005-5
10 https://doi.org/10.1016/j.jneumeth.2007.10.013
11 https://doi.org/10.1016/s0925-2312(98)00040-x
12 https://doi.org/10.1073/pnas.0705683104
13 https://doi.org/10.1073/pnas.1303053111
14 https://doi.org/10.1088/1748-3190/11/2/026002
15 https://doi.org/10.1103/physreve.65.041922
16 https://doi.org/10.1109/72.668899
17 https://doi.org/10.1109/ijcnn.2008.4634199
18 https://doi.org/10.1109/ijcnn.2010.5596364
19 https://doi.org/10.1109/iscas.2010.5536970
20 https://doi.org/10.1109/jproc.2014.2313565
21 https://doi.org/10.1109/mm.2018.112130359
22 https://doi.org/10.1109/tbcas.2017.2759700
23 https://doi.org/10.1109/tc.2012.142
24 https://doi.org/10.1109/tnn.2005.845141
25 https://doi.org/10.1109/tvlsi.2013.2294916
26 https://doi.org/10.1126/science.1254642
27 https://doi.org/10.1126/science.275.5297.213
28 https://doi.org/10.1146/annurev.neuro.24.1.139
29 https://doi.org/10.1162/neco.2008.06-08-804
30 https://doi.org/10.1371/journal.pcbi.1003037
31 https://doi.org/10.1523/jneurosci.0230-16.2016
32 https://doi.org/10.1523/jneurosci.18-24-10464.1998
33 https://doi.org/10.3389/fncir.2018.00052
34 https://doi.org/10.3389/fnins.2015.00491
35 https://doi.org/10.3389/fnins.2018.00941
36 https://doi.org/10.3389/frobt.2014.00005
37 https://doi.org/10.3389/neuro.11.011.2008
38 schema:datePublished 2019-04-03
39 schema:datePublishedReg 2019-04-03
40 schema:description Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use these systems in applications, we need "neuromorphic algorithms" that can run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent plasticity and lateral inhibition to perform unsupervised clustering. With this model, time-invariant, rate-coded datasets can be mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware. We developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1081741
45 schema:name An unsupervised neuromorphic clustering algorithm.
46 schema:productId N039fe247d0c54a02b6a5812e35095add
47 N9636ea7b1aa54c4a96815384dcb8b984
48 N983368b993ad45aeb1bddb02e63d785c
49 N9d100e4baa7e4f108d1f7dcced9711d1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182355
51 https://doi.org/10.1007/s00422-019-00797-7
52 schema:sdDatePublished 2019-04-11T13:55
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N55ee3007e4a94f589c97f81dca6cfe68
55 schema:url http://link.springer.com/10.1007/s00422-019-00797-7
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N039fe247d0c54a02b6a5812e35095add schema:name doi
60 schema:value 10.1007/s00422-019-00797-7
61 rdf:type schema:PropertyValue
62 N0ba005b593cb4903b50c1a9bc82bd9fd rdf:first N13a250dbe1f34c5f8aa677f7e902b182
63 rdf:rest rdf:nil
64 N13a250dbe1f34c5f8aa677f7e902b182 schema:affiliation https://www.grid.ac/institutes/grid.12082.39
65 schema:familyName Nowotny
66 schema:givenName Thomas
67 rdf:type schema:Person
68 N2ce105c7821249179549449cd7d685a2 rdf:first N8f86db32559e4bbf879418480efe3680
69 rdf:rest Nfa2118e33ef04b37bb77f5038041e46a
70 N461119ac88cb4ddea3cecb087e68ac3c schema:affiliation https://www.grid.ac/institutes/grid.5846.f
71 schema:familyName Schmuker
72 schema:givenName Michael
73 rdf:type schema:Person
74 N55ee3007e4a94f589c97f81dca6cfe68 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N8f86db32559e4bbf879418480efe3680 schema:affiliation https://www.grid.ac/institutes/grid.12082.39
77 schema:familyName Diamond
78 schema:givenName Alan
79 rdf:type schema:Person
80 N9636ea7b1aa54c4a96815384dcb8b984 schema:name pubmed_id
81 schema:value 30944983
82 rdf:type schema:PropertyValue
83 N983368b993ad45aeb1bddb02e63d785c schema:name dimensions_id
84 schema:value pub.1113182355
85 rdf:type schema:PropertyValue
86 N9d100e4baa7e4f108d1f7dcced9711d1 schema:name nlm_unique_id
87 schema:value 7502533
88 rdf:type schema:PropertyValue
89 Nfa2118e33ef04b37bb77f5038041e46a rdf:first N461119ac88cb4ddea3cecb087e68ac3c
90 rdf:rest N0ba005b593cb4903b50c1a9bc82bd9fd
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:grant.3796504 http://pending.schema.org/fundedItem sg:pub.10.1007/s00422-019-00797-7
98 rdf:type schema:MonetaryGrant
99 sg:journal.1081741 schema:issn 0340-1200
100 1432-0770
101 schema:name Biological Cybernetics
102 rdf:type schema:Periodical
103 sg:pub.10.1007/s00422-005-0019-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033508819
104 https://doi.org/10.1007/s00422-005-0019-7
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
107 https://doi.org/10.1038/383076a0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nn.2264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026396107
110 https://doi.org/10.1038/nn.2264
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/srep18854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010316138
113 https://doi.org/10.1038/srep18854
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1006/jmps.1999.1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033636267
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jneumeth.2007.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010702161
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0925-2312(98)00040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035831248
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.0705683104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010490569
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.1303053111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034118717
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/1748-3190/11/2/026002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043575191
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.65.041922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025528849
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/72.668899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219046
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/ijcnn.2008.4634199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093827356
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/ijcnn.2010.5596364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094486518
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/iscas.2010.5536970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095073463
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/jproc.2014.2313565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297912
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/mm.2018.112130359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100431793
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tbcas.2017.2759700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092524939
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tc.2012.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061535275
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tnn.2005.845141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002360675
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tvlsi.2013.2294916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061817161
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1254642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005021843
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.275.5297.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157370
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1146/annurev.neuro.24.1.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103946
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1162/neco.2008.06-08-804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039891861
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1371/journal.pcbi.1003037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016706883
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1523/jneurosci.0230-16.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039183899
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1523/jneurosci.18-24-10464.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083361411
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3389/fncir.2018.00052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105478019
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3389/fnins.2015.00491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023648663
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3389/fnins.2018.00941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110575217
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3389/frobt.2014.00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036088562
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3389/neuro.11.011.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029035579
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.12082.39 schema:alternateName University of Sussex
176 schema:name School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
177 School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK. t.nowotny@sussex.ac.uk.
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.5846.f schema:alternateName University of Hertfordshire
180 schema:name Department of Computer Science, University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK.
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...