Combined mechanisms of neural firing rate homeostasis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Paul Miller, Jonathan Cannon

ABSTRACT

Spikes in the membrane potential of neurons comprise the currency of information processing in the brain. The ability of neurons to convert any information present across their multiple inputs into a significant modification to the pattern of their emitted spikes depends on the rate at which they emit spikes. If the mean rate is near the neuron's maximum, or if the rate is near zero, then changes in the inputs have minimal impact on the neuron's firing rate. Therefore, a neuron needs to control its mean rate. Protocols that either dramatically increase or decrease a neuron's firing rate lead to multiple compensatory changes that return the neuron's mean rate toward its prior value. In this primer, first as a summary of our previous work (Cannon and Miller in J Neurophysiol 116(5):2004-2022, 2016; Cannon and Miller in J Math Neurosci 7(1):1, 2017), we describe the advantages and disadvantages of having more than one such control mechanism responding to the neuron's firing rate. We suggest how problems of two, coexisting, potentially competing mechanisms can be overcome. Key requirements are: (1) the control be of a distribution of values, which the controlled variable achieves over a fast timescale compared to the timescale of the control system; (2) at least one of the control mechanisms be nonlinear; and (3) the two control systems are satisfied by a stable distribution or range of values that can be achieved by the variable. We show examples of functional control systems, including the previously studied integral feedback controller and new simulations of a "bang-bang" controller, that allow for compensation when inputs to the system change. Finally, we present new results describing how the underlying signal processing pathways would produce mechanisms of dual control, as opposed to a single mechanism with two outputs, and compare the responses of these systems to changes of input statistics. More... »

PAGES

47-59

Journal

TITLE

Biological Cybernetics

ISSUE

1-2

VOLUME

113

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-018-0768-8

DOI

http://dx.doi.org/10.1007/s00422-018-0768-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105172613

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29955960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brandeis University", 
          "id": "https://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Volen National Center for Complex Systems, MS013, Brandeis University, 02454, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Paul", 
        "id": "sg:person.01020007617.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020007617.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brandeis University", 
          "id": "https://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Volen National Center for Complex Systems, MS013, Brandeis University, 02454, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannon", 
        "givenName": "Jonathan", 
        "id": "sg:person.016476530605.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476530605.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000486428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005770975", 
          "https://doi.org/10.1038/nrn1327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005770975", 
          "https://doi.org/10.1038/nrn1327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005770975", 
          "https://doi.org/10.1038/nrn1327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1309966110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508072103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006729126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007672286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010617646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.5298-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010699072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(02)01092-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011369387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2013.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013664545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016349195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019055215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019941191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wsbm.1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020195311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1945-12.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021224131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021729608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-013-0452-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024907191", 
          "https://doi.org/10.1007/s10827-013-0452-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-013-0452-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024907191", 
          "https://doi.org/10.1007/s10827-013-0452-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027369082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0705827104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027652536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028309085", 
          "https://doi.org/10.1038/9165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/9165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028309085", 
          "https://doi.org/10.1038/9165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)81155-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028794687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478989", 
          "https://doi.org/10.1038/36103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478989", 
          "https://doi.org/10.1038/36103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034857831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.4.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037225122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008971908649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037693824", 
          "https://doi.org/10.1023/a:1008971908649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2009.181024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037964462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13408-017-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040435795", 
          "https://doi.org/10.1186/s13408-017-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13408-017-0043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040435795", 
          "https://doi.org/10.1186/s13408-017-0043-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2011.210179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042078509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.5.2506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042461252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3733-05.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044619775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.23.13339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045570955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.2404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046292363", 
          "https://doi.org/10.1038/nn.2404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.2404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046292363", 
          "https://doi.org/10.1038/nn.2404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047155391", 
          "https://doi.org/10.1038/20939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047155391", 
          "https://doi.org/10.1038/20939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4684-04.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047873953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/neuro.10.006.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050514844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050563011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3047-09.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052722050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00253.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063199665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2002.88.2.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075100753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0618-17.2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085921706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Spikes in the membrane potential of neurons comprise the currency of information processing in the brain. The ability of neurons to convert any information present across their multiple inputs into a significant modification to the pattern of their emitted spikes depends on the rate at which they emit spikes. If the mean rate is near the neuron's maximum, or if the rate is near zero, then changes in the inputs have minimal impact on the neuron's firing rate. Therefore, a neuron needs to control its mean rate. Protocols that either dramatically increase or decrease a neuron's firing rate lead to multiple compensatory changes that return the neuron's mean rate toward its prior value. In this primer, first as a summary of our previous work (Cannon and Miller in J Neurophysiol 116(5):2004-2022, 2016; Cannon and Miller in J Math Neurosci 7(1):1, 2017), we describe the advantages and disadvantages of having more than one such control mechanism responding to the neuron's firing rate. We suggest how problems of two, coexisting, potentially competing mechanisms can be overcome. Key requirements are: (1) the control be of a distribution of values, which the controlled variable achieves over a fast timescale compared to the timescale of the control system; (2) at least one of the control mechanisms be nonlinear; and (3) the two control systems are satisfied by a stable distribution or range of values that can be achieved by the variable. We show examples of functional control systems, including the previously studied integral feedback controller and new simulations of a \"bang-bang\" controller, that allow for compensation when inputs to the system change. Finally, we present new results describing how the underlying signal processing pathways would produce mechanisms of dual control, as opposed to a single mechanism with two outputs, and compare the responses of these systems to changes of input statistics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-018-0768-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "name": "Combined mechanisms of neural firing rate homeostasis", 
    "pagination": "47-59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86b5f5391f7a8a97687cfa7451f91356386ca2eac6dd60ade451b931ae11020d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29955960"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-018-0768-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105172613"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-018-0768-8", 
      "https://app.dimensions.ai/details/publication/pub.1105172613"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127426_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00422-018-0768-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0768-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0768-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0768-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0768-8'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-018-0768-8 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Na37f2226bfa347cb81f16076adb5b7ac
4 schema:citation sg:pub.10.1007/s10827-013-0452-x
5 sg:pub.10.1023/a:1008971908649
6 sg:pub.10.1038/20939
7 sg:pub.10.1038/36103
8 sg:pub.10.1038/9165
9 sg:pub.10.1038/nn.2404
10 sg:pub.10.1038/nrn1327
11 sg:pub.10.1186/s13408-017-0043-7
12 https://doi.org/10.1002/wsbm.1307
13 https://doi.org/10.1016/j.cell.2008.10.008
14 https://doi.org/10.1016/j.neuron.2008.02.031
15 https://doi.org/10.1016/j.neuron.2008.09.034
16 https://doi.org/10.1016/j.neuron.2010.09.020
17 https://doi.org/10.1016/j.neuron.2013.03.017
18 https://doi.org/10.1016/j.neuron.2014.04.002
19 https://doi.org/10.1016/j.neuroscience.2012.07.015
20 https://doi.org/10.1016/s0896-6273(00)81155-1
21 https://doi.org/10.1016/s0896-6273(02)01092-9
22 https://doi.org/10.1073/pnas.0508072103
23 https://doi.org/10.1073/pnas.0705827104
24 https://doi.org/10.1073/pnas.1309966110
25 https://doi.org/10.1073/pnas.93.23.13339
26 https://doi.org/10.1074/jbc.271.5.2506
27 https://doi.org/10.1093/cercor/bhg095
28 https://doi.org/10.1093/cercor/bhg101
29 https://doi.org/10.1113/jphysiol.2009.181024
30 https://doi.org/10.1113/jphysiol.2011.210179
31 https://doi.org/10.1126/science.1104171
32 https://doi.org/10.1152/jn.00253.2016
33 https://doi.org/10.1152/jn.2002.88.2.659
34 https://doi.org/10.1162/neco.2007.19.4.885
35 https://doi.org/10.1371/journal.pone.0006742
36 https://doi.org/10.1523/jneurosci.0618-17.2017
37 https://doi.org/10.1523/jneurosci.1945-12.2012
38 https://doi.org/10.1523/jneurosci.3047-09.2010
39 https://doi.org/10.1523/jneurosci.3733-05.2006
40 https://doi.org/10.1523/jneurosci.4684-04.2005
41 https://doi.org/10.1523/jneurosci.5298-07.2008
42 https://doi.org/10.3389/neuro.10.006.2007
43 schema:datePublished 2019-04
44 schema:datePublishedReg 2019-04-01
45 schema:description Spikes in the membrane potential of neurons comprise the currency of information processing in the brain. The ability of neurons to convert any information present across their multiple inputs into a significant modification to the pattern of their emitted spikes depends on the rate at which they emit spikes. If the mean rate is near the neuron's maximum, or if the rate is near zero, then changes in the inputs have minimal impact on the neuron's firing rate. Therefore, a neuron needs to control its mean rate. Protocols that either dramatically increase or decrease a neuron's firing rate lead to multiple compensatory changes that return the neuron's mean rate toward its prior value. In this primer, first as a summary of our previous work (Cannon and Miller in J Neurophysiol 116(5):2004-2022, 2016; Cannon and Miller in J Math Neurosci 7(1):1, 2017), we describe the advantages and disadvantages of having more than one such control mechanism responding to the neuron's firing rate. We suggest how problems of two, coexisting, potentially competing mechanisms can be overcome. Key requirements are: (1) the control be of a distribution of values, which the controlled variable achieves over a fast timescale compared to the timescale of the control system; (2) at least one of the control mechanisms be nonlinear; and (3) the two control systems are satisfied by a stable distribution or range of values that can be achieved by the variable. We show examples of functional control systems, including the previously studied integral feedback controller and new simulations of a "bang-bang" controller, that allow for compensation when inputs to the system change. Finally, we present new results describing how the underlying signal processing pathways would produce mechanisms of dual control, as opposed to a single mechanism with two outputs, and compare the responses of these systems to changes of input statistics.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N17380809dd2248fca3b6d8acb761cb4a
50 Nc39af6551a934b4684b94fc367ed09ac
51 sg:journal.1081741
52 schema:name Combined mechanisms of neural firing rate homeostasis
53 schema:pagination 47-59
54 schema:productId N56f50d76a80c444eb4a8a4d1aabb752c
55 N7d0f11c18eed4f588d97d13fac610cd1
56 N91f03531cf7a4367a030db9bf5c41d89
57 Nc4b5019ef99f4eca943148a4da255446
58 Nf181637f911041ca9028bad55c68377b
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105172613
60 https://doi.org/10.1007/s00422-018-0768-8
61 schema:sdDatePublished 2019-04-11T11:36
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Na8913be27d8c4e9a9a55789dd0cfd827
64 schema:url https://link.springer.com/10.1007%2Fs00422-018-0768-8
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N17380809dd2248fca3b6d8acb761cb4a schema:volumeNumber 113
69 rdf:type schema:PublicationVolume
70 N56f50d76a80c444eb4a8a4d1aabb752c schema:name nlm_unique_id
71 schema:value 7502533
72 rdf:type schema:PropertyValue
73 N7d0f11c18eed4f588d97d13fac610cd1 schema:name doi
74 schema:value 10.1007/s00422-018-0768-8
75 rdf:type schema:PropertyValue
76 N83081a0554854cf093faa83e80a7b257 rdf:first sg:person.016476530605.50
77 rdf:rest rdf:nil
78 N91f03531cf7a4367a030db9bf5c41d89 schema:name pubmed_id
79 schema:value 29955960
80 rdf:type schema:PropertyValue
81 Na37f2226bfa347cb81f16076adb5b7ac rdf:first sg:person.01020007617.33
82 rdf:rest N83081a0554854cf093faa83e80a7b257
83 Na8913be27d8c4e9a9a55789dd0cfd827 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nc39af6551a934b4684b94fc367ed09ac schema:issueNumber 1-2
86 rdf:type schema:PublicationIssue
87 Nc4b5019ef99f4eca943148a4da255446 schema:name dimensions_id
88 schema:value pub.1105172613
89 rdf:type schema:PropertyValue
90 Nf181637f911041ca9028bad55c68377b schema:name readcube_id
91 schema:value 86b5f5391f7a8a97687cfa7451f91356386ca2eac6dd60ade451b931ae11020d
92 rdf:type schema:PropertyValue
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
97 schema:name Neurosciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1081741 schema:issn 0340-1200
100 1432-0770
101 schema:name Biological Cybernetics
102 rdf:type schema:Periodical
103 sg:person.01020007617.33 schema:affiliation https://www.grid.ac/institutes/grid.253264.4
104 schema:familyName Miller
105 schema:givenName Paul
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020007617.33
107 rdf:type schema:Person
108 sg:person.016476530605.50 schema:affiliation https://www.grid.ac/institutes/grid.253264.4
109 schema:familyName Cannon
110 schema:givenName Jonathan
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476530605.50
112 rdf:type schema:Person
113 sg:pub.10.1007/s10827-013-0452-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024907191
114 https://doi.org/10.1007/s10827-013-0452-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1008971908649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037693824
117 https://doi.org/10.1023/a:1008971908649
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/20939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047155391
120 https://doi.org/10.1038/20939
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/36103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478989
123 https://doi.org/10.1038/36103
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/9165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028309085
126 https://doi.org/10.1038/9165
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nn.2404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046292363
129 https://doi.org/10.1038/nn.2404
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nrn1327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005770975
132 https://doi.org/10.1038/nrn1327
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/s13408-017-0043-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040435795
135 https://doi.org/10.1186/s13408-017-0043-7
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/wsbm.1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195311
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cell.2008.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007672286
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.neuron.2008.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000486428
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.neuron.2008.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016349195
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.neuron.2010.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010617646
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neuron.2013.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013664545
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neuron.2014.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050563011
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neuroscience.2012.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034857831
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0896-6273(00)81155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028794687
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0896-6273(02)01092-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011369387
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.0508072103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006729126
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.0705827104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027652536
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.1309966110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465288
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.93.23.13339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045570955
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1074/jbc.271.5.2506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042461252
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/cercor/bhg095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019941191
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/cercor/bhg101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729608
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1113/jphysiol.2009.181024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037964462
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1113/jphysiol.2011.210179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042078509
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1104171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027369082
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1152/jn.00253.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063199665
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1152/jn.2002.88.2.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075100753
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1162/neco.2007.19.4.885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037225122
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1371/journal.pone.0006742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019055215
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1523/jneurosci.0618-17.2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085921706
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1523/jneurosci.1945-12.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021224131
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1523/jneurosci.3047-09.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052722050
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1523/jneurosci.3733-05.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044619775
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1523/jneurosci.4684-04.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047873953
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1523/jneurosci.5298-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010699072
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3389/neuro.10.006.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050514844
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.253264.4 schema:alternateName Brandeis University
200 schema:name Department of Biology and Volen National Center for Complex Systems, MS013, Brandeis University, 02454, Waltham, MA, USA
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...