Trans-algorithmic nature of learning in biological systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

Yury P. Shimansky

ABSTRACT

Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided. More... »

PAGES

357-368

References to SciGraph publications

  • 2017. Is there any Real Substance to the Claims for a ‘New Computationalism’? in UNVEILING DYNAMICS AND COMPLEXITY
  • 2002-02. Non-Turing Computations Via Malament–Hogarth Space-Times in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2008. An Introduction to Kolmogorov Complexity and Its Applications in NONE
  • 2017-12. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems in SCIENTIFIC REPORTS
  • 2007. Bacterial Stress Sensors in CELL STRESS PROTEINS
  • 2016-12. Mechanisms of viral mutation in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2009-03. Quantum Darwinism in NATURE PHYSICS
  • 2003-07. Quantum Algorithm for Hilbert's Tenth Problem in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2004. Hypercomputational Models in ALAN TURING: LIFE AND LEGACY OF A GREAT THINKER
  • 2003-02. Transcending Turing Computability in MINDS AND MACHINES
  • 2010-08. Adaptive force produced by stress-induced regulation of random variation intensity in BIOLOGICAL CYBERNETICS
  • 2009-12. Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis in BIOLOGICAL CYBERNETICS
  • 2011-04. On the origin of gravity and the laws of Newton in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009. The New Computationalism – A Lesson from Embodied Agents in TOWARDS INTELLIGENT ENGINEERING AND INFORMATION TECHNOLOGY
  • 2013-03. Evaluating evolutionary models of stress-induced mutagenesis in bacteria in NATURE REVIEWS GENETICS
  • 2009-07. Adaptive prediction of environmental changes by microorganisms in NATURE
  • 1993. Algorithms: Main Ideas and Applications in NONE
  • 2015-12. Undecidability of the spectral gap in NATURE
  • 2004-11. The Concept of a Universal Learning System as a Basis for Creating a General Mathematical Theory of Learning in MINDS AND MACHINES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00422-018-0757-y

    DOI

    http://dx.doi.org/10.1007/s00422-018-0757-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103765186

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29721604


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "St. Joseph's Hospital and Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.240866.e", 
              "name": [
                "Arizona State University, 85004, Phoenix, AZ, USA", 
                "St. Joseph\u2019s Hospital, 85013, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimansky", 
            "givenName": "Yury P.", 
            "id": "sg:person.01203343167.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203343167.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003965504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10409230701648502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009209552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:mind.0000045988.12140.9f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009936856", 
              "https://doi.org/10.1023/b:mind.0000045988.12140.9f"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2005.09.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012776413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1002519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013449529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016203284", 
              "https://doi.org/10.1038/nphys1202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-010-0387-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017828669", 
              "https://doi.org/10.1007/s00422-010-0387-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-010-0387-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017828669", 
              "https://doi.org/10.1007/s00422-010-0387-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014019225365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018112119", 
              "https://doi.org/10.1023/a:1014019225365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1018495529", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-8232-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018495529", 
              "https://doi.org/10.1007/978-94-015-8232-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-8232-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018495529", 
              "https://doi.org/10.1007/978-94-015-8232-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882618-010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021054221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-009-0341-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027717639", 
              "https://doi.org/10.1007/s00422-009-0341-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-009-0341-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027717639", 
              "https://doi.org/10.1007/s00422-009-0341-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-009-0341-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027717639", 
              "https://doi.org/10.1007/s00422-009-0341-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03737-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027800172", 
              "https://doi.org/10.1007/978-3-642-03737-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s100302386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029953806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021397712328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031758136", 
              "https://doi.org/10.1023/a:1021397712328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025780028846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035231626", 
              "https://doi.org/10.1023/a:1025780028846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036671042", 
              "https://doi.org/10.1007/jhep04(2011)029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.260501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040055359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.260501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040055359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1040973888", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-49820-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040973888", 
              "https://doi.org/10.1007/978-0-387-49820-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-49820-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040973888", 
              "https://doi.org/10.1007/978-0-387-49820-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05642-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041934763", 
              "https://doi.org/10.1007/978-3-662-05642-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-016-2299-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043173513", 
              "https://doi.org/10.1007/s00018-016-2299-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-016-2299-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043173513", 
              "https://doi.org/10.1007/s00018-016-2299-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043906341", 
              "https://doi.org/10.1038/nrg3415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046900490", 
              "https://doi.org/10.1038/nature16059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1002533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051462445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-39717-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051666988", 
              "https://doi.org/10.1007/978-0-387-39717-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-39717-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051666988", 
              "https://doi.org/10.1007/978-0-387-39717-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052047975", 
              "https://doi.org/10.1038/nature08112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052047975", 
              "https://doi.org/10.1038/nature08112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.05.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053639125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bjps/axr016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059433940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.238103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.238103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3662604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062137514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1154456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-00810-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084821391", 
              "https://doi.org/10.1038/s41598-017-00810-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-58741-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086750858", 
              "https://doi.org/10.1007/978-3-319-58741-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7551/978-0-262-33936-0-ch039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099562361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139171496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104316226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/p303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108566141"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00422-018-0757-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081741", 
            "issn": [
              "0340-1200", 
              "1432-0770"
            ], 
            "name": "Biological Cybernetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "112"
          }
        ], 
        "name": "Trans-algorithmic nature of learning in biological systems", 
        "pagination": "357-368", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7de38bbcec8a954ba581fb3bfbe2b6a9470eea98ce4c4bf466b3136820a0bff8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29721604"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7502533"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00422-018-0757-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103765186"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00422-018-0757-y", 
          "https://app.dimensions.ai/details/publication/pub.1103765186"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00422-018-0757-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0757-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0757-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0757-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-018-0757-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00422-018-0757-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0e98e0e5ce5d41f48e492949f5833398
    4 schema:citation sg:pub.10.1007/978-0-387-39717-7_3
    5 sg:pub.10.1007/978-0-387-49820-1
    6 sg:pub.10.1007/978-3-319-58741-7_2
    7 sg:pub.10.1007/978-3-642-03737-5_4
    8 sg:pub.10.1007/978-3-662-05642-4_6
    9 sg:pub.10.1007/978-94-015-8232-2
    10 sg:pub.10.1007/jhep04(2011)029
    11 sg:pub.10.1007/s00018-016-2299-6
    12 sg:pub.10.1007/s00422-009-0341-6
    13 sg:pub.10.1007/s00422-010-0387-5
    14 sg:pub.10.1023/a:1014019225365
    15 sg:pub.10.1023/a:1021397712328
    16 sg:pub.10.1023/a:1025780028846
    17 sg:pub.10.1023/b:mind.0000045988.12140.9f
    18 sg:pub.10.1038/nature08112
    19 sg:pub.10.1038/nature16059
    20 sg:pub.10.1038/nphys1202
    21 sg:pub.10.1038/nrg3415
    22 sg:pub.10.1038/s41598-017-00810-8
    23 https://app.dimensions.ai/details/publication/pub.1018495529
    24 https://app.dimensions.ai/details/publication/pub.1040973888
    25 https://doi.org/10.1016/j.amc.2005.09.066
    26 https://doi.org/10.1016/j.cell.2012.05.044
    27 https://doi.org/10.1017/cbo9781139171496
    28 https://doi.org/10.1080/10409230701648502
    29 https://doi.org/10.1093/bjps/axr016
    30 https://doi.org/10.1103/physrevlett.108.260501
    31 https://doi.org/10.1103/physrevlett.114.238103
    32 https://doi.org/10.1115/1.3662604
    33 https://doi.org/10.1126/science.1154456
    34 https://doi.org/10.1142/p303
    35 https://doi.org/10.1371/journal.pbio.0020049
    36 https://doi.org/10.1371/journal.pbio.1002519
    37 https://doi.org/10.1371/journal.pbio.1002533
    38 https://doi.org/10.1515/9781400882618-010
    39 https://doi.org/10.3390/s100302386
    40 https://doi.org/10.7551/978-0-262-33936-0-ch039
    41 schema:datePublished 2018-08
    42 schema:datePublishedReg 2018-08-01
    43 schema:description Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N1b241731a48b479abd62b916d26df72c
    48 N37c3a32d594946c7a5bf2a5f2de7bc86
    49 sg:journal.1081741
    50 schema:name Trans-algorithmic nature of learning in biological systems
    51 schema:pagination 357-368
    52 schema:productId N26a855c7378d40feaf792da34d31bb76
    53 N33c7b463488e460faefdabe197c9bebe
    54 N6e6914a0c43e4a5094a73ef062142983
    55 N6f25d4e71c9143899e9469d24ca8299e
    56 N86300a9c4f364c62a692419844bb551b
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103765186
    58 https://doi.org/10.1007/s00422-018-0757-y
    59 schema:sdDatePublished 2019-04-11T10:03
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N5c8bd6065a6f4391bd7d686d2922c5ea
    62 schema:url http://link.springer.com/10.1007%2Fs00422-018-0757-y
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N0e98e0e5ce5d41f48e492949f5833398 rdf:first sg:person.01203343167.73
    67 rdf:rest rdf:nil
    68 N1b241731a48b479abd62b916d26df72c schema:volumeNumber 112
    69 rdf:type schema:PublicationVolume
    70 N26a855c7378d40feaf792da34d31bb76 schema:name pubmed_id
    71 schema:value 29721604
    72 rdf:type schema:PropertyValue
    73 N33c7b463488e460faefdabe197c9bebe schema:name nlm_unique_id
    74 schema:value 7502533
    75 rdf:type schema:PropertyValue
    76 N37c3a32d594946c7a5bf2a5f2de7bc86 schema:issueNumber 4
    77 rdf:type schema:PublicationIssue
    78 N5c8bd6065a6f4391bd7d686d2922c5ea schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N6e6914a0c43e4a5094a73ef062142983 schema:name readcube_id
    81 schema:value 7de38bbcec8a954ba581fb3bfbe2b6a9470eea98ce4c4bf466b3136820a0bff8
    82 rdf:type schema:PropertyValue
    83 N6f25d4e71c9143899e9469d24ca8299e schema:name dimensions_id
    84 schema:value pub.1103765186
    85 rdf:type schema:PropertyValue
    86 N86300a9c4f364c62a692419844bb551b schema:name doi
    87 schema:value 10.1007/s00422-018-0757-y
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1081741 schema:issn 0340-1200
    96 1432-0770
    97 schema:name Biological Cybernetics
    98 rdf:type schema:Periodical
    99 sg:person.01203343167.73 schema:affiliation https://www.grid.ac/institutes/grid.240866.e
    100 schema:familyName Shimansky
    101 schema:givenName Yury P.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203343167.73
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-0-387-39717-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051666988
    105 https://doi.org/10.1007/978-0-387-39717-7_3
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-0-387-49820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040973888
    108 https://doi.org/10.1007/978-0-387-49820-1
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-319-58741-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086750858
    111 https://doi.org/10.1007/978-3-319-58741-7_2
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-642-03737-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027800172
    114 https://doi.org/10.1007/978-3-642-03737-5_4
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-662-05642-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041934763
    117 https://doi.org/10.1007/978-3-662-05642-4_6
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-94-015-8232-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018495529
    120 https://doi.org/10.1007/978-94-015-8232-2
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep04(2011)029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036671042
    123 https://doi.org/10.1007/jhep04(2011)029
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00018-016-2299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043173513
    126 https://doi.org/10.1007/s00018-016-2299-6
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00422-009-0341-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027717639
    129 https://doi.org/10.1007/s00422-009-0341-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00422-010-0387-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017828669
    132 https://doi.org/10.1007/s00422-010-0387-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1023/a:1014019225365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018112119
    135 https://doi.org/10.1023/a:1014019225365
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1023/a:1021397712328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031758136
    138 https://doi.org/10.1023/a:1021397712328
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1023/a:1025780028846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035231626
    141 https://doi.org/10.1023/a:1025780028846
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1023/b:mind.0000045988.12140.9f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009936856
    144 https://doi.org/10.1023/b:mind.0000045988.12140.9f
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nature08112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052047975
    147 https://doi.org/10.1038/nature08112
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nature16059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046900490
    150 https://doi.org/10.1038/nature16059
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nphys1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016203284
    153 https://doi.org/10.1038/nphys1202
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nrg3415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043906341
    156 https://doi.org/10.1038/nrg3415
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/s41598-017-00810-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084821391
    159 https://doi.org/10.1038/s41598-017-00810-8
    160 rdf:type schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1018495529 schema:CreativeWork
    162 https://app.dimensions.ai/details/publication/pub.1040973888 schema:CreativeWork
    163 https://doi.org/10.1016/j.amc.2005.09.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012776413
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.cell.2012.05.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053639125
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1017/cbo9781139171496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104316226
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1080/10409230701648502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009209552
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1093/bjps/axr016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059433940
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevlett.108.260501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055359
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.114.238103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763715
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1115/1.3662604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062137514
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1126/science.1154456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457492
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1142/p303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108566141
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1371/journal.pbio.0020049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003965504
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1371/journal.pbio.1002519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013449529
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1371/journal.pbio.1002533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051462445
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1515/9781400882618-010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021054221
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.3390/s100302386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029953806
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.7551/978-0-262-33936-0-ch039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099562361
    194 rdf:type schema:CreativeWork
    195 https://www.grid.ac/institutes/grid.240866.e schema:alternateName St. Joseph's Hospital and Medical Center
    196 schema:name Arizona State University, 85004, Phoenix, AZ, USA
    197 St. Joseph’s Hospital, 85013, Phoenix, AZ, USA
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...