Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-04

AUTHORS

Matthieu Gilson

ABSTRACT

Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input–output mapping—determined by EC—for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data—movie viewing versus resting state—illustrates that changes in local variability and changes in brain coordination go hand in hand. More... »

PAGES

153-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-017-0741-y

DOI

http://dx.doi.org/10.1007/s00422-017-0741-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093155503

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29204807


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universitat Pompeu Fabra, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Universitat Pompeu Fabra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "Matthieu", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrn2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053109894", 
          "https://doi.org/10.1038/nrn2201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085463459", 
          "https://doi.org/10.1038/nn.4569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/507290a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051041089", 
          "https://doi.org/10.1038/507290a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009626583", 
          "https://doi.org/10.1038/nrn2961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27752-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001026737", 
          "https://doi.org/10.1007/978-3-540-27752-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep38424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036892103", 
          "https://doi.org/10.1038/srep38424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006408724", 
          "https://doi.org/10.1038/nrn730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052547486", 
          "https://doi.org/10.1038/nrn3963"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-04", 
    "datePublishedReg": "2017-12-04", 
    "description": "Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input\u2013output mapping\u2014determined by EC\u2014for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data\u2014movie viewing versus resting state\u2014illustrates that changes in local variability and changes in brain coordination go hand in hand.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-017-0741-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3940037", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "functional connectivity", 
      "effective connectivity", 
      "BOLD activity", 
      "connected brain networks", 
      "whole brain", 
      "brain regions", 
      "brain networks", 
      "observed functional connectivity", 
      "brain coordination", 
      "BOLD data", 
      "covariance patterns", 
      "fMRI data", 
      "activity", 
      "brain", 
      "fMRI", 
      "patterns", 
      "data", 
      "Nodal activity", 
      "study", 
      "hand", 
      "procedure", 
      "variability", 
      "detection paradigm", 
      "connectivity", 
      "changes", 
      "correlation patterns", 
      "addition", 
      "model", 
      "network dynamics", 
      "analysis", 
      "statistics", 
      "covariance", 
      "region", 
      "paradigm", 
      "method", 
      "interaction", 
      "estimates", 
      "coordination", 
      "middle", 
      "approach", 
      "respect", 
      "perspective", 
      "directional interactions", 
      "context", 
      "strength", 
      "proxy", 
      "present paper", 
      "model-based approach", 
      "local variability", 
      "network model", 
      "applications", 
      "network", 
      "dynamics", 
      "generalizing", 
      "propagation", 
      "second-order statistics", 
      "paper", 
      "output covariance", 
      "tuning procedure"
    ], 
    "name": "Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective", 
    "pagination": "153-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093155503"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-017-0741-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29204807"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-017-0741-y", 
      "https://app.dimensions.ai/details/publication/pub.1093155503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_740.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-017-0741-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-017-0741-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-017-0741-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-017-0741-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-017-0741-y'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      22 PREDICATES      106 URIs      85 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-017-0741-y schema:about N2dd401cfd14f43bc80c3331a9945ebc7
2 N53a6d1baecdd4c0984aaa9199266312a
3 N561c3bb157974552aee0a192a3004dae
4 N5b58214384744c4587da0cd8d1087090
5 N92aa610666fd4bc495a038e017070e33
6 Nb6b25843c39d4004b49f9052becca422
7 Nc0070f90b09b41d28b867971b90f8c53
8 Ne0aa34cdb94a4e8c9b56bc9f92500abb
9 anzsrc-for:02
10 anzsrc-for:0299
11 anzsrc-for:08
12 anzsrc-for:0801
13 anzsrc-for:17
14 anzsrc-for:1702
15 schema:author Nc4dd9c397b8a4fe180f00f7c84d6a80c
16 schema:citation sg:pub.10.1007/978-3-540-27752-1
17 sg:pub.10.1038/507290a
18 sg:pub.10.1038/nn.4569
19 sg:pub.10.1038/nrn2201
20 sg:pub.10.1038/nrn2575
21 sg:pub.10.1038/nrn2961
22 sg:pub.10.1038/nrn3963
23 sg:pub.10.1038/nrn730
24 sg:pub.10.1038/srep38424
25 schema:datePublished 2017-12-04
26 schema:datePublishedReg 2017-12-04
27 schema:description Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input–output mapping—determined by EC—for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data—movie viewing versus resting state—illustrates that changes in local variability and changes in brain coordination go hand in hand.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N1292dc9246d24caa9b6e7655022f3de6
32 Nab0195b569024c1ea476dfa92b933cd0
33 sg:journal.1081741
34 schema:keywords BOLD activity
35 BOLD data
36 Nodal activity
37 activity
38 addition
39 analysis
40 applications
41 approach
42 brain
43 brain coordination
44 brain networks
45 brain regions
46 changes
47 connected brain networks
48 connectivity
49 context
50 coordination
51 correlation patterns
52 covariance
53 covariance patterns
54 data
55 detection paradigm
56 directional interactions
57 dynamics
58 effective connectivity
59 estimates
60 fMRI
61 fMRI data
62 functional connectivity
63 generalizing
64 hand
65 interaction
66 local variability
67 method
68 middle
69 model
70 model-based approach
71 network
72 network dynamics
73 network model
74 observed functional connectivity
75 output covariance
76 paper
77 paradigm
78 patterns
79 perspective
80 present paper
81 procedure
82 propagation
83 proxy
84 region
85 respect
86 second-order statistics
87 statistics
88 strength
89 study
90 tuning procedure
91 variability
92 whole brain
93 schema:name Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective
94 schema:pagination 153-161
95 schema:productId Na27bf0d4e6e744e08a73538a41cd4ea6
96 Nac1093f0315c4396af34fe5b65b84b1b
97 Ne67da981e1dd410285c7495373d4b916
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093155503
99 https://doi.org/10.1007/s00422-017-0741-y
100 schema:sdDatePublished 2022-05-10T10:16
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Nbe2c57fa0cd14e52b5b54bb83b961f68
103 schema:url https://doi.org/10.1007/s00422-017-0741-y
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N1292dc9246d24caa9b6e7655022f3de6 schema:issueNumber 1-2
108 rdf:type schema:PublicationIssue
109 N2dd401cfd14f43bc80c3331a9945ebc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Brain Mapping
111 rdf:type schema:DefinedTerm
112 N53a6d1baecdd4c0984aaa9199266312a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Brain
114 rdf:type schema:DefinedTerm
115 N561c3bb157974552aee0a192a3004dae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Humans
117 rdf:type schema:DefinedTerm
118 N5b58214384744c4587da0cd8d1087090 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Image Processing, Computer-Assisted
120 rdf:type schema:DefinedTerm
121 N92aa610666fd4bc495a038e017070e33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Magnetic Resonance Imaging
123 rdf:type schema:DefinedTerm
124 Na27bf0d4e6e744e08a73538a41cd4ea6 schema:name dimensions_id
125 schema:value pub.1093155503
126 rdf:type schema:PropertyValue
127 Nab0195b569024c1ea476dfa92b933cd0 schema:volumeNumber 112
128 rdf:type schema:PublicationVolume
129 Nac1093f0315c4396af34fe5b65b84b1b schema:name doi
130 schema:value 10.1007/s00422-017-0741-y
131 rdf:type schema:PropertyValue
132 Nb6b25843c39d4004b49f9052becca422 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Neural Pathways
134 rdf:type schema:DefinedTerm
135 Nbe2c57fa0cd14e52b5b54bb83b961f68 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nc0070f90b09b41d28b867971b90f8c53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Oxygen
139 rdf:type schema:DefinedTerm
140 Nc4dd9c397b8a4fe180f00f7c84d6a80c rdf:first sg:person.01362642406.55
141 rdf:rest rdf:nil
142 Ne0aa34cdb94a4e8c9b56bc9f92500abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Neurological
144 rdf:type schema:DefinedTerm
145 Ne67da981e1dd410285c7495373d4b916 schema:name pubmed_id
146 schema:value 29204807
147 rdf:type schema:PropertyValue
148 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
149 schema:name Physical Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
152 schema:name Other Physical Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
155 schema:name Information and Computing Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
158 schema:name Artificial Intelligence and Image Processing
159 rdf:type schema:DefinedTerm
160 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
161 schema:name Psychology and Cognitive Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
164 schema:name Cognitive Sciences
165 rdf:type schema:DefinedTerm
166 sg:grant.3940037 http://pending.schema.org/fundedItem sg:pub.10.1007/s00422-017-0741-y
167 rdf:type schema:MonetaryGrant
168 sg:journal.1081741 schema:issn 0340-1200
169 1432-0770
170 schema:name Biological Cybernetics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01362642406.55 schema:affiliation grid-institutes:grid.5612.0
174 schema:familyName Gilson
175 schema:givenName Matthieu
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
177 rdf:type schema:Person
178 sg:pub.10.1007/978-3-540-27752-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001026737
179 https://doi.org/10.1007/978-3-540-27752-1
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/507290a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051041089
182 https://doi.org/10.1038/507290a
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nn.4569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085463459
185 https://doi.org/10.1038/nn.4569
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrn2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053109894
188 https://doi.org/10.1038/nrn2201
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
191 https://doi.org/10.1038/nrn2575
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nrn2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009626583
194 https://doi.org/10.1038/nrn2961
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nrn3963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052547486
197 https://doi.org/10.1038/nrn3963
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nrn730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006408724
200 https://doi.org/10.1038/nrn730
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/srep38424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892103
203 https://doi.org/10.1038/srep38424
204 rdf:type schema:CreativeWork
205 grid-institutes:grid.5612.0 schema:alternateName Universitat Pompeu Fabra, Barcelona, Spain
206 schema:name Universitat Pompeu Fabra, Barcelona, Spain
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...