Online learning and control of attraction basins for the development of sensorimotor control strategies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Antoine de Rengervé, Pierre Andry, Philippe Gaussier

ABSTRACT

Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories. More... »

PAGES

255-274

References to SciGraph publications

  • 2006-12. The short-latency dopamine signal: a role in discovering novel actions? in NATURE REVIEWS NEUROSCIENCE
  • 2016. Adaptive Resonance Theory in ENCYCLOPEDIA OF MACHINE LEARNING AND DATA MINING
  • 1987-03. Muscle models: What is gained and what is lost by varying model complexity in BIOLOGICAL CYBERNETICS
  • 1984-02. Centrally programmed patterns of muscle activity in voluntary motor behavior of humans in EXPERIMENTAL BRAIN RESEARCH
  • 2008. Flexible Control Mechanism for Multi-DOF Robotic Arm Based on Biological Fluctuation in FROM ANIMALS TO ANIMATS 10
  • 1982-07. Analysis of a simple self-organizing process in BIOLOGICAL CYBERNETICS
  • 2009. The Equilibrium-Point Hypothesis – Past, Present and Future in PROGRESS IN MOTOR CONTROL
  • 1977-06. Dynamics of pattern formation in lateral-inhibition type neural fields in BIOLOGICAL CYBERNETICS
  • 1997. Locally Weighted Learning in LAZY LEARNING
  • 2006-01. Stability and motor adaptation in human arm movements in BIOLOGICAL CYBERNETICS
  • 1987-11. The control of hand equilibrium trajectories in multi-joint arm movements in BIOLOGICAL CYBERNETICS
  • 1997-02. Locally Weighted Learning in ARTIFICIAL INTELLIGENCE REVIEW
  • 2006. Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics in ADAPTIVE MOTION OF ANIMALS AND MACHINES
  • 2005. Perception as a Dynamical Sensori-Motor Attraction Basin in ADVANCES IN ARTIFICIAL LIFE
  • 2010. Proprioception and Imitation: On the Road to Agent Individuation in FROM MOTOR LEARNING TO INTERACTION LEARNING IN ROBOTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00422-014-0640-4

    DOI

    http://dx.doi.org/10.1007/s00422-014-0640-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018491604

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25576394


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Impedance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feedback, Sensory", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle, Skeletal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Online Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proprioception", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Psychomotor Performance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Robotics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Visual Perception", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "ETIS Laboratory, ENSEA/Cergy-Pontoise University, CNRS, 95000, Cergy Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Rengerv\u00e9", 
            "givenName": "Antoine", 
            "id": "sg:person.01013053562.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013053562.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "ETIS Laboratory, ENSEA/Cergy-Pontoise University, CNRS, 95000, Cergy Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andry", 
            "givenName": "Pierre", 
            "id": "sg:person.012152621257.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "ETIS Laboratory, ENSEA/Cergy-Pontoise University, CNRS, 95000, Cergy Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaussier", 
            "givenName": "Philippe", 
            "id": "sg:person.01041272554.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.medengphy.2011.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001659444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-4115(08)61915-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003425296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-2053-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004004057", 
              "https://doi.org/10.1007/978-94-017-2053-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/105971230401200203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004786902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/105971230401200203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004786902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-8890(95)00049-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005616328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69134-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007067335", 
              "https://doi.org/10.1007/978-3-540-69134-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006559212014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007265193", 
              "https://doi.org/10.1023/a:1006559212014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553090_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007330833", 
              "https://doi.org/10.1007/11553090_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553090_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007330833", 
              "https://doi.org/10.1007/11553090_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976698300016963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007609080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0012-1649.37.5.579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008308719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/088395198117596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009321480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010568230", 
              "https://doi.org/10.1038/nrn2022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010568230", 
              "https://doi.org/10.1038/nrn2022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/027836402320556331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011111435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/027836402320556331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011111435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3099-08.2008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015702052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.1938.0050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016448432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00222895.1986.10735369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020031081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnbot.2014.00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020045135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7502-7_6-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020087481", 
              "https://doi.org/10.1007/978-1-4899-7502-7_6-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2008.10.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020572152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00318375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024543651", 
              "https://doi.org/10.1007/bf00318375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00318375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024543651", 
              "https://doi.org/10.1007/bf00318375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00235815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025445800", 
              "https://doi.org/10.1007/bf00235815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00235815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025445800", 
              "https://doi.org/10.1007/bf00235815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026723402", 
              "https://doi.org/10.1007/bf00317973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026723402", 
              "https://doi.org/10.1007/bf00317973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-8890(95)00052-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029057226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archopht.1968.03850040430012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035397011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(98)00062-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036723167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09540090310001655110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037709041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976605774320557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038693025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/4-431-31381-8_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042889290", 
              "https://doi.org/10.1007/4-431-31381-8_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-77064-2_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043580444", 
              "https://doi.org/10.1007/978-0-387-77064-2_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-77064-2_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043580444", 
              "https://doi.org/10.1007/978-0-387-77064-2_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco_a_00393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00338819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991904", 
              "https://doi.org/10.1007/bf00338819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00337259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045614723", 
              "https://doi.org/10.1007/bf00337259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364907073776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049854626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364907073776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049854626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-05181-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051391752", 
              "https://doi.org/10.1007/978-3-642-05181-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-05181-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051391752", 
              "https://doi.org/10.1007/978-3-642-05181-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-005-0025-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051826518", 
              "https://doi.org/10.1007/s00422-005-0025-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-005-0025-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051826518", 
              "https://doi.org/10.1007/s00422-005-0025-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0140525x00072538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054867111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0140525x00072538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054867111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3516.789685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061160473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.14411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061243019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mra.2010.936947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061419590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1985.325498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmca.2009.2033029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061795555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2006.886952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3749885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062621349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0096-4174(18)30128-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075774309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.05-07-01688.1985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1080085642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.04-11-02745.1984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081781219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7551/mitpress/9780262042383.003.0012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087382120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2010.5651090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093363708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2010.5509994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093367256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2004.1302393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093465944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2010.5648931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093810323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2006.282501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094438737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ichr.2009.5379592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094792569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2012.6385674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094834097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2012.6224877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095486667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2006.282468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095544973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2009.5152423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095735037"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00422-014-0640-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081741", 
            "issn": [
              "0340-1200", 
              "1432-0770"
            ], 
            "name": "Biological Cybernetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "109"
          }
        ], 
        "name": "Online learning and control of attraction basins for the development of sensorimotor control strategies", 
        "pagination": "255-274", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "581b44a45f29fd36e0d301c8c9107a7be5f11ae2c20484f23b0d8b916a13fb0b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25576394"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7502533"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00422-014-0640-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018491604"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00422-014-0640-4", 
          "https://app.dimensions.ai/details/publication/pub.1018491604"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000487.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00422-014-0640-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-014-0640-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-014-0640-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-014-0640-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-014-0640-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    317 TRIPLES      21 PREDICATES      98 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00422-014-0640-4 schema:about N07435b77118d4f9a88cd1ca4b21c4b4d
    2 N08923570c49d48b893d9ec367cc78a1e
    3 N0f35b0899a924d838058001730378757
    4 N15a1ee5d44f6449c8cf330fc88fe7e18
    5 N35f6dc35f24047888819bc4b8fb39c23
    6 N447e0dee42874b2d9a9ab61c42e754c1
    7 N4e19bbe02b51460c9a81da2f0a062f7b
    8 N5b9c881ea44a4bc190efe39e7e45671c
    9 Nb407aa70edbc4fec92b0b7cb00ef7fcb
    10 Nc78b000392ed4c5ea0830cb982e5463c
    11 Ne9d45032f7d94a25bd52ebb986d324d5
    12 Nf9ca8af2cb394edfaa17dcf37d8b35b3
    13 anzsrc-for:17
    14 anzsrc-for:1701
    15 schema:author Na0ab2facfcce4e6c8aa76faab6c51e40
    16 schema:citation sg:pub.10.1007/11553090_5
    17 sg:pub.10.1007/4-431-31381-8_23
    18 sg:pub.10.1007/978-0-387-77064-2_38
    19 sg:pub.10.1007/978-1-4899-7502-7_6-1
    20 sg:pub.10.1007/978-3-540-69134-1_3
    21 sg:pub.10.1007/978-3-642-05181-4_3
    22 sg:pub.10.1007/978-94-017-2053-3_2
    23 sg:pub.10.1007/bf00235815
    24 sg:pub.10.1007/bf00317973
    25 sg:pub.10.1007/bf00318375
    26 sg:pub.10.1007/bf00337259
    27 sg:pub.10.1007/bf00338819
    28 sg:pub.10.1007/s00422-005-0025-9
    29 sg:pub.10.1023/a:1006559212014
    30 sg:pub.10.1038/nrn2022
    31 https://doi.org/10.1001/archopht.1968.03850040430012
    32 https://doi.org/10.1016/0921-8890(95)00049-6
    33 https://doi.org/10.1016/0921-8890(95)00052-6
    34 https://doi.org/10.1016/j.medengphy.2011.11.018
    35 https://doi.org/10.1016/j.robot.2008.10.024
    36 https://doi.org/10.1016/s0096-4174(18)30128-8
    37 https://doi.org/10.1016/s0166-4115(08)61915-9
    38 https://doi.org/10.1016/s0893-6080(98)00062-8
    39 https://doi.org/10.1017/s0140525x00072538
    40 https://doi.org/10.1037/0012-1649.37.5.579
    41 https://doi.org/10.1080/00222895.1986.10735369
    42 https://doi.org/10.1080/088395198117596
    43 https://doi.org/10.1080/09540090310001655110
    44 https://doi.org/10.1098/rspb.1938.0050
    45 https://doi.org/10.1109/3516.789685
    46 https://doi.org/10.1109/9.14411
    47 https://doi.org/10.1109/ichr.2009.5379592
    48 https://doi.org/10.1109/icra.2012.6224877
    49 https://doi.org/10.1109/iros.2006.282468
    50 https://doi.org/10.1109/iros.2006.282501
    51 https://doi.org/10.1109/iros.2010.5648931
    52 https://doi.org/10.1109/iros.2010.5651090
    53 https://doi.org/10.1109/iros.2012.6385674
    54 https://doi.org/10.1109/mra.2010.936947
    55 https://doi.org/10.1109/robot.2004.1302393
    56 https://doi.org/10.1109/robot.2009.5152423
    57 https://doi.org/10.1109/robot.2010.5509994
    58 https://doi.org/10.1109/tbme.1985.325498
    59 https://doi.org/10.1109/tsmca.2009.2033029
    60 https://doi.org/10.1109/tsmcb.2006.886952
    61 https://doi.org/10.1126/science.3749885
    62 https://doi.org/10.1162/089976605774320557
    63 https://doi.org/10.1162/089976698300016963
    64 https://doi.org/10.1162/neco_a_00393
    65 https://doi.org/10.1177/027836402320556331
    66 https://doi.org/10.1177/0278364907073776
    67 https://doi.org/10.1177/105971230401200203
    68 https://doi.org/10.1523/jneurosci.04-11-02745.1984
    69 https://doi.org/10.1523/jneurosci.05-07-01688.1985
    70 https://doi.org/10.1523/jneurosci.3099-08.2008
    71 https://doi.org/10.3389/fnbot.2014.00001
    72 https://doi.org/10.7551/mitpress/9780262042383.003.0012
    73 schema:datePublished 2015-04
    74 schema:datePublishedReg 2015-04-01
    75 schema:description Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.
    76 schema:genre research_article
    77 schema:inLanguage en
    78 schema:isAccessibleForFree false
    79 schema:isPartOf N2f55668b225a4d63add3219be04a24df
    80 Nb27bfafef1de485486fa45879cebcd5a
    81 sg:journal.1081741
    82 schema:name Online learning and control of attraction basins for the development of sensorimotor control strategies
    83 schema:pagination 255-274
    84 schema:productId N03b09179a59b4d21a11a29f937b8f023
    85 N665d8de23fd5484792199d89e0a10e5d
    86 Nb75e0926e2b8449ca5298ed410d59ddf
    87 Nc7c84eef295d4285bd2daebc0607ef51
    88 Nf3571bb80e79480bb8a9fbd8161654a6
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018491604
    90 https://doi.org/10.1007/s00422-014-0640-4
    91 schema:sdDatePublished 2019-04-10T20:41
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Nd48026e7bb0d4a339eee9aa1521dbc28
    94 schema:url http://link.springer.com/10.1007/s00422-014-0640-4
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N03b09179a59b4d21a11a29f937b8f023 schema:name pubmed_id
    99 schema:value 25576394
    100 rdf:type schema:PropertyValue
    101 N07435b77118d4f9a88cd1ca4b21c4b4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Electric Impedance
    103 rdf:type schema:DefinedTerm
    104 N08923570c49d48b893d9ec367cc78a1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Computer Simulation
    106 rdf:type schema:DefinedTerm
    107 N0f35b0899a924d838058001730378757 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Online Systems
    109 rdf:type schema:DefinedTerm
    110 N15a1ee5d44f6449c8cf330fc88fe7e18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Proprioception
    112 rdf:type schema:DefinedTerm
    113 N2f55668b225a4d63add3219be04a24df schema:volumeNumber 109
    114 rdf:type schema:PublicationVolume
    115 N35f6dc35f24047888819bc4b8fb39c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Neurological
    117 rdf:type schema:DefinedTerm
    118 N447e0dee42874b2d9a9ab61c42e754c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Visual Perception
    120 rdf:type schema:DefinedTerm
    121 N4e19bbe02b51460c9a81da2f0a062f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 N5b9c881ea44a4bc190efe39e7e45671c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Robotics
    126 rdf:type schema:DefinedTerm
    127 N665d8de23fd5484792199d89e0a10e5d schema:name dimensions_id
    128 schema:value pub.1018491604
    129 rdf:type schema:PropertyValue
    130 N8e6aeaf2f545466294fdd8d83a77b48e rdf:first sg:person.012152621257.16
    131 rdf:rest Neaab12e5e4c24c71b7974d7b3ee182b3
    132 Na0ab2facfcce4e6c8aa76faab6c51e40 rdf:first sg:person.01013053562.01
    133 rdf:rest N8e6aeaf2f545466294fdd8d83a77b48e
    134 Nb27bfafef1de485486fa45879cebcd5a schema:issueNumber 2
    135 rdf:type schema:PublicationIssue
    136 Nb407aa70edbc4fec92b0b7cb00ef7fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Muscle, Skeletal
    138 rdf:type schema:DefinedTerm
    139 Nb75e0926e2b8449ca5298ed410d59ddf schema:name doi
    140 schema:value 10.1007/s00422-014-0640-4
    141 rdf:type schema:PropertyValue
    142 Nc78b000392ed4c5ea0830cb982e5463c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Algorithms
    144 rdf:type schema:DefinedTerm
    145 Nc7c84eef295d4285bd2daebc0607ef51 schema:name readcube_id
    146 schema:value 581b44a45f29fd36e0d301c8c9107a7be5f11ae2c20484f23b0d8b916a13fb0b
    147 rdf:type schema:PropertyValue
    148 Nd48026e7bb0d4a339eee9aa1521dbc28 schema:name Springer Nature - SN SciGraph project
    149 rdf:type schema:Organization
    150 Ne9d45032f7d94a25bd52ebb986d324d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Psychomotor Performance
    152 rdf:type schema:DefinedTerm
    153 Neaab12e5e4c24c71b7974d7b3ee182b3 rdf:first sg:person.01041272554.05
    154 rdf:rest rdf:nil
    155 Nf3571bb80e79480bb8a9fbd8161654a6 schema:name nlm_unique_id
    156 schema:value 7502533
    157 rdf:type schema:PropertyValue
    158 Nf9ca8af2cb394edfaa17dcf37d8b35b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Feedback, Sensory
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Psychology and Cognitive Sciences
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Psychology
    166 rdf:type schema:DefinedTerm
    167 sg:journal.1081741 schema:issn 0340-1200
    168 1432-0770
    169 schema:name Biological Cybernetics
    170 rdf:type schema:Periodical
    171 sg:person.01013053562.01 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    172 schema:familyName de Rengervé
    173 schema:givenName Antoine
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013053562.01
    175 rdf:type schema:Person
    176 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    177 schema:familyName Gaussier
    178 schema:givenName Philippe
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
    180 rdf:type schema:Person
    181 sg:person.012152621257.16 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    182 schema:familyName Andry
    183 schema:givenName Pierre
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16
    185 rdf:type schema:Person
    186 sg:pub.10.1007/11553090_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007330833
    187 https://doi.org/10.1007/11553090_5
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/4-431-31381-8_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042889290
    190 https://doi.org/10.1007/4-431-31381-8_23
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-0-387-77064-2_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043580444
    193 https://doi.org/10.1007/978-0-387-77064-2_38
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-1-4899-7502-7_6-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087481
    196 https://doi.org/10.1007/978-1-4899-7502-7_6-1
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-540-69134-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007067335
    199 https://doi.org/10.1007/978-3-540-69134-1_3
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-642-05181-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051391752
    202 https://doi.org/10.1007/978-3-642-05181-4_3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-94-017-2053-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004004057
    205 https://doi.org/10.1007/978-94-017-2053-3_2
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00235815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025445800
    208 https://doi.org/10.1007/bf00235815
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf00317973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026723402
    211 https://doi.org/10.1007/bf00317973
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf00318375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543651
    214 https://doi.org/10.1007/bf00318375
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf00337259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045614723
    217 https://doi.org/10.1007/bf00337259
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/bf00338819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991904
    220 https://doi.org/10.1007/bf00338819
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00422-005-0025-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051826518
    223 https://doi.org/10.1007/s00422-005-0025-9
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1006559212014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007265193
    226 https://doi.org/10.1023/a:1006559212014
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nrn2022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010568230
    229 https://doi.org/10.1038/nrn2022
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1001/archopht.1968.03850040430012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397011
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/0921-8890(95)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005616328
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/0921-8890(95)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029057226
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.medengphy.2011.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001659444
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.robot.2008.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020572152
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/s0096-4174(18)30128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075774309
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/s0166-4115(08)61915-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003425296
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/s0893-6080(98)00062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036723167
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1017/s0140525x00072538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054867111
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1037/0012-1649.37.5.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008308719
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1080/00222895.1986.10735369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031081
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1080/088395198117596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321480
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1080/09540090310001655110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037709041
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1098/rspb.1938.0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016448432
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1109/3516.789685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160473
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1109/9.14411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061243019
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1109/ichr.2009.5379592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094792569
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1109/icra.2012.6224877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095486667
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1109/iros.2006.282468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095544973
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1109/iros.2006.282501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094438737
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1109/iros.2010.5648931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093810323
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1109/iros.2010.5651090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093363708
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1109/iros.2012.6385674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094834097
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1109/mra.2010.936947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061419590
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1109/robot.2004.1302393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093465944
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1109/robot.2009.5152423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095735037
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1109/robot.2010.5509994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093367256
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1109/tbme.1985.325498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525217
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1109/tsmca.2009.2033029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795555
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1109/tsmcb.2006.886952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796701
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1126/science.3749885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621349
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1162/089976605774320557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038693025
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1162/089976698300016963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007609080
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1162/neco_a_00393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043668073
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1177/027836402320556331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011111435
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1177/0278364907073776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049854626
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1177/105971230401200203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004786902
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1523/jneurosci.04-11-02745.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081781219
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1523/jneurosci.05-07-01688.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080085642
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1523/jneurosci.3099-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015702052
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.3389/fnbot.2014.00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020045135
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.7551/mitpress/9780262042383.003.0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087382120
    314 rdf:type schema:CreativeWork
    315 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    316 schema:name ETIS Laboratory, ENSEA/Cergy-Pontoise University, CNRS, 95000, Cergy Pontoise, France
    317 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...