Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

Matthieu Gilson, Anthony N. Burkitt, David B. Grayden, Doreen A. Thomas, J. Leo van Hemmen

ABSTRACT

In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network. More... »

PAGES

427

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-009-0346-1

DOI

http://dx.doi.org/10.1007/s00422-009-0346-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038215342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19937070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bionics Institute", 
          "id": "https://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "Matthieu", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bionics Institute", 
          "id": "https://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkitt", 
        "givenName": "Anthony N.", 
        "id": "sg:person.0704026214.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bionics Institute", 
          "id": "https://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grayden", 
        "givenName": "David B.", 
        "id": "sg:person.01361317114.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Doreen A.", 
        "id": "sg:person.01220740562.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department (T35) and BCCN\u2013Munich, Technische Universit\u00e4t M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Hemmen", 
        "givenName": "J. Leo", 
        "id": "sg:person.01066247102.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/089976602317250915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003286257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhh053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004716067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-007-0148-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010529867", 
          "https://doi.org/10.1007/s00422-007-0148-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-007-0148-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010529867", 
          "https://doi.org/10.1007/s00422-007-0148-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.6.1437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011162977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383076a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183215", 
          "https://doi.org/10.1038/383076a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014185043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.3.639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017088565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2004.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021030323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(01)00542-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026217492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.24.1.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1997.sp022031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034446028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.10.2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034473992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0319-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034695944", 
          "https://doi.org/10.1007/s00422-009-0319-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0319-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034695944", 
          "https://doi.org/10.1007/s00422-009-0319-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.03-07-497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034864894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(01)00451-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035305119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0343-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036787336", 
          "https://doi.org/10.1007/s00422-009-0343-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0343-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036787336", 
          "https://doi.org/10.1007/s00422-009-0343-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0320-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020006", 
          "https://doi.org/10.1007/s00422-009-0320-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0320-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020006", 
          "https://doi.org/10.1007/s00422-009-0320-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976604773135041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037493732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.031910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041334498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.031910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041334498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.6.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042459875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-006-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043536093", 
          "https://doi.org/10.1007/s00422-006-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-006-0068-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043536093", 
          "https://doi.org/10.1007/s00422-006-0068-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-008-0233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045495873", 
          "https://doi.org/10.1007/s00422-008-0233-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-008-0233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045495873", 
          "https://doi.org/10.1007/s00422-008-0233-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-007-0022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049987717", 
          "https://doi.org/10.1007/s10827-007-0022-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.4498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.4498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.031902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.031902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.041911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.041911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.051909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.051909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.20-23-08812.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074734746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.23-09-03697.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075282755"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-009-0346-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "name": "Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV", 
    "pagination": "427", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b60bade945aa4912d3623297e6817d65e0acee635bb2ec21bffd068299d381fc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19937070"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-009-0346-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038215342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-009-0346-1", 
      "https://app.dimensions.ai/details/publication/pub.1038215342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-009-0346-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0346-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0346-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0346-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0346-1'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      65 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-009-0346-1 schema:about N295813f7497a4af1977777516bfbd977
2 N92acddf06b2448159c924ad617326af3
3 Na2123f94a5d4440c9b1f630867a78a26
4 Nb60255e01c7042b1b8e36ae28e6b6745
5 Nba436ca8549949509443203f553af5a5
6 Nbaa92d8abf5c4f92bd139d86cbfd5b1a
7 Nc1f7a5ff51174d65acf4b2c977d77322
8 anzsrc-for:11
9 anzsrc-for:1109
10 schema:author Na8f0ef0318a548f1941e7b28e271b914
11 schema:citation sg:pub.10.1007/s00422-006-0068-6
12 sg:pub.10.1007/s00422-007-0148-2
13 sg:pub.10.1007/s00422-008-0233-1
14 sg:pub.10.1007/s00422-009-0319-4
15 sg:pub.10.1007/s00422-009-0320-y
16 sg:pub.10.1007/s00422-009-0343-4
17 sg:pub.10.1007/s10827-007-0022-1
18 sg:pub.10.1038/383076a0
19 https://doi.org/10.1016/j.biosystems.2004.09.016
20 https://doi.org/10.1016/j.neuron.2008.01.036
21 https://doi.org/10.1016/s0896-6273(01)00451-2
22 https://doi.org/10.1016/s0896-6273(01)00542-6
23 https://doi.org/10.1093/cercor/bhh053
24 https://doi.org/10.1103/physreve.59.4498
25 https://doi.org/10.1103/physreve.65.031902
26 https://doi.org/10.1103/physreve.69.031910
27 https://doi.org/10.1103/physreve.73.041911
28 https://doi.org/10.1103/physreve.77.051909
29 https://doi.org/10.1113/jphysiol.1997.sp022031
30 https://doi.org/10.1146/annurev.neuro.24.1.139
31 https://doi.org/10.1162/089976602317250915
32 https://doi.org/10.1162/089976604773135041
33 https://doi.org/10.1162/neco.2006.18.10.2414
34 https://doi.org/10.1162/neco.2006.18.6.1318
35 https://doi.org/10.1162/neco.2007.19.3.639
36 https://doi.org/10.1162/neco.2007.19.6.1437
37 https://doi.org/10.1162/neco.2008.03-07-497
38 https://doi.org/10.1523/jneurosci.20-23-08812.2000
39 https://doi.org/10.1523/jneurosci.23-09-03697.2003
40 schema:datePublished 2009-12
41 schema:datePublishedReg 2009-12-01
42 schema:description In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf Ne4f885350a404b4e9a881dfe2dc5dd81
47 Nf21187274f3e4ffab4b8e5e6a2fc196a
48 sg:journal.1081741
49 schema:name Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV
50 schema:pagination 427
51 schema:productId N02d7fdcf4b08485f858a86357032b824
52 N22595fdd286642c187361160de2b6a04
53 N529a4d7b57a94ec09ec87e803f4aec17
54 N794f5a17fb5a4d2880511562c628f3e2
55 Nf0c39517df764ad2a61b90f6908c75ff
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038215342
57 https://doi.org/10.1007/s00422-009-0346-1
58 schema:sdDatePublished 2019-04-11T09:40
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N8ddf35f2f4424926bfe77c14d0d75c60
61 schema:url http://link.springer.com/10.1007/s00422-009-0346-1
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N02d7fdcf4b08485f858a86357032b824 schema:name nlm_unique_id
66 schema:value 7502533
67 rdf:type schema:PropertyValue
68 N22595fdd286642c187361160de2b6a04 schema:name doi
69 schema:value 10.1007/s00422-009-0346-1
70 rdf:type schema:PropertyValue
71 N295813f7497a4af1977777516bfbd977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Action Potentials
73 rdf:type schema:DefinedTerm
74 N529a4d7b57a94ec09ec87e803f4aec17 schema:name dimensions_id
75 schema:value pub.1038215342
76 rdf:type schema:PropertyValue
77 N60a6e048c1c74bdd97db4a02d3dd9836 rdf:first sg:person.01361317114.20
78 rdf:rest N908c680eeaf040eebde1dbe55f866f5b
79 N6508ef90a60e4a4293b5aad1e297cde7 rdf:first sg:person.0704026214.23
80 rdf:rest N60a6e048c1c74bdd97db4a02d3dd9836
81 N794f5a17fb5a4d2880511562c628f3e2 schema:name readcube_id
82 schema:value b60bade945aa4912d3623297e6817d65e0acee635bb2ec21bffd068299d381fc
83 rdf:type schema:PropertyValue
84 N86edd95923884c45b986deb53b14bce0 rdf:first sg:person.01066247102.81
85 rdf:rest rdf:nil
86 N8ddf35f2f4424926bfe77c14d0d75c60 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N908c680eeaf040eebde1dbe55f866f5b rdf:first sg:person.01220740562.10
89 rdf:rest N86edd95923884c45b986deb53b14bce0
90 N92acddf06b2448159c924ad617326af3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Neurons
92 rdf:type schema:DefinedTerm
93 Na2123f94a5d4440c9b1f630867a78a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Models, Neurological
95 rdf:type schema:DefinedTerm
96 Na8f0ef0318a548f1941e7b28e271b914 rdf:first sg:person.01362642406.55
97 rdf:rest N6508ef90a60e4a4293b5aad1e297cde7
98 Nb60255e01c7042b1b8e36ae28e6b6745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Nerve Net
100 rdf:type schema:DefinedTerm
101 Nba436ca8549949509443203f553af5a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Time Factors
103 rdf:type schema:DefinedTerm
104 Nbaa92d8abf5c4f92bd139d86cbfd5b1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Neuronal Plasticity
106 rdf:type schema:DefinedTerm
107 Nc1f7a5ff51174d65acf4b2c977d77322 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Mathematics
109 rdf:type schema:DefinedTerm
110 Ne4f885350a404b4e9a881dfe2dc5dd81 schema:issueNumber 5-6
111 rdf:type schema:PublicationIssue
112 Nf0c39517df764ad2a61b90f6908c75ff schema:name pubmed_id
113 schema:value 19937070
114 rdf:type schema:PropertyValue
115 Nf21187274f3e4ffab4b8e5e6a2fc196a schema:volumeNumber 101
116 rdf:type schema:PublicationVolume
117 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
118 schema:name Medical and Health Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
121 schema:name Neurosciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1081741 schema:issn 0340-1200
124 1432-0770
125 schema:name Biological Cybernetics
126 rdf:type schema:Periodical
127 sg:person.01066247102.81 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
128 schema:familyName van Hemmen
129 schema:givenName J. Leo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
131 rdf:type schema:Person
132 sg:person.01220740562.10 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
133 schema:familyName Thomas
134 schema:givenName Doreen A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10
136 rdf:type schema:Person
137 sg:person.01361317114.20 schema:affiliation https://www.grid.ac/institutes/grid.431365.6
138 schema:familyName Grayden
139 schema:givenName David B.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20
141 rdf:type schema:Person
142 sg:person.01362642406.55 schema:affiliation https://www.grid.ac/institutes/grid.431365.6
143 schema:familyName Gilson
144 schema:givenName Matthieu
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
146 rdf:type schema:Person
147 sg:person.0704026214.23 schema:affiliation https://www.grid.ac/institutes/grid.431365.6
148 schema:familyName Burkitt
149 schema:givenName Anthony N.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23
151 rdf:type schema:Person
152 sg:pub.10.1007/s00422-006-0068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043536093
153 https://doi.org/10.1007/s00422-006-0068-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00422-007-0148-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010529867
156 https://doi.org/10.1007/s00422-007-0148-2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00422-008-0233-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045495873
159 https://doi.org/10.1007/s00422-008-0233-1
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00422-009-0319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034695944
162 https://doi.org/10.1007/s00422-009-0319-4
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00422-009-0320-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037020006
165 https://doi.org/10.1007/s00422-009-0320-y
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00422-009-0343-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036787336
168 https://doi.org/10.1007/s00422-009-0343-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s10827-007-0022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049987717
171 https://doi.org/10.1007/s10827-007-0022-1
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
174 https://doi.org/10.1038/383076a0
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.biosystems.2004.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021030323
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neuron.2008.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014185043
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0896-6273(01)00451-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035305119
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0896-6273(01)00542-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026217492
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/cercor/bhh053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004716067
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.59.4498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723700
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.65.031902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728059
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreve.69.031910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041334498
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physreve.73.041911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734388
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreve.77.051909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737394
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1113/jphysiol.1997.sp022031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034446028
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1146/annurev.neuro.24.1.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103946
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1162/089976602317250915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003286257
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1162/089976604773135041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037493732
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1162/neco.2006.18.10.2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034473992
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1162/neco.2006.18.6.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042459875
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1162/neco.2007.19.3.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017088565
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1162/neco.2007.19.6.1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011162977
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1162/neco.2008.03-07-497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864894
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1523/jneurosci.20-23-08812.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074734746
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1523/jneurosci.23-09-03697.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075282755
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
219 schema:name Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia
220 NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.431365.6 schema:alternateName Bionics Institute
223 schema:name Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia
224 NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia
225 The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
228 schema:name Physik Department (T35) and BCCN–Munich, Technische Universität München, 85747, Garching bei München, Germany
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...