Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11-24

AUTHORS

Matthieu Gilson, Anthony N. Burkitt, David B. Grayden, Doreen A. Thomas, J. Leo van Hemmen

ABSTRACT

In contrast to a feed-forward architecture, the weight dynamics induced by spike-timing-dependent plasticity (STDP) in a recurrent neuronal network is not yet well understood. In this article, we extend a previous study of the impact of additive STDP in a recurrent network that is driven by spontaneous activity (no external stimulating inputs) from a fully connected network to one that is only partially connected. The asymptotic state of the network is analyzed, and it is found that the equilibrium and stability conditions for the firing rates are similar for both full and partial connectivity: STDP causes the firing rates to converge toward the same value and remain quasi-homogeneous. However, when STDP induces strong weight competition, the connectivity affects the weight dynamics in that the distribution of the weights disperses more quickly for lower density than for higher density. The asymptotic weight distribution strongly depends upon that at the beginning of the learning epoch; consequently, homogeneous connectivity alone is not sufficient to obtain homogeneous neuronal activity. In the absence of external inputs, STDP can nevertheless generate structure in the network through autocorrelation effects, for example, by introducing asymmetry in network topology. More... »

PAGES

411

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-009-0343-4

DOI

http://dx.doi.org/10.1007/s00422-009-0343-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036787336

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19937071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "Matthieu", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkitt", 
        "givenName": "Anthony N.", 
        "id": "sg:person.0704026214.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grayden", 
        "givenName": "David B.", 
        "id": "sg:person.01361317114.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Doreen A.", 
        "id": "sg:person.01220740562.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physik Department (T35) and BCCN\u2013Munich, Technische Universit\u00e4t M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department (T35) and BCCN\u2013Munich, Technische Universit\u00e4t M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Hemmen", 
        "givenName": "J. Leo", 
        "id": "sg:person.01066247102.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10827-007-0022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049987717", 
          "https://doi.org/10.1007/s10827-007-0022-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383076a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183215", 
          "https://doi.org/10.1038/383076a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-007-0148-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010529867", 
          "https://doi.org/10.1007/s00422-007-0148-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-970-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109706182", 
          "https://doi.org/10.1007/978-1-84628-970-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0346-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038215342", 
          "https://doi.org/10.1007/s00422-009-0346-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-008-0233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045495873", 
          "https://doi.org/10.1007/s00422-008-0233-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0319-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034695944", 
          "https://doi.org/10.1007/s00422-009-0319-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0320-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037020006", 
          "https://doi.org/10.1007/s00422-009-0320-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11-24", 
    "datePublishedReg": "2009-11-24", 
    "description": "In contrast to a feed-forward architecture, the weight dynamics induced by spike-timing-dependent plasticity (STDP) in a recurrent neuronal network is not yet well understood. In this article, we extend a previous study of the impact of additive STDP in a recurrent network that is driven by spontaneous activity (no external stimulating inputs) from a fully connected network to one that is only partially connected. The asymptotic state of the network is analyzed, and it is found that the equilibrium and stability conditions for the firing rates are similar for both full and partial connectivity: STDP causes the firing rates to converge toward the same value and remain quasi-homogeneous. However, when STDP induces strong weight competition, the connectivity affects the weight dynamics in that the distribution of the weights disperses more quickly for lower density than for higher density. The asymptotic weight distribution strongly depends upon that at the beginning of the learning epoch; consequently, homogeneous connectivity alone is not sufficient to obtain homogeneous neuronal activity. In the absence of external inputs, STDP can nevertheless generate structure in the network through autocorrelation effects, for example, by introducing asymmetry in network topology.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-009-0343-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "keywords": [
      "weight dynamics", 
      "asymptotic states", 
      "stability conditions", 
      "asymptotic weight distribution", 
      "homogeneous connectivity", 
      "network topology", 
      "recurrent neuronal networks", 
      "partial connectivity", 
      "recurrent networks", 
      "connected network", 
      "external inputs", 
      "autocorrelation effects", 
      "network structure", 
      "dynamics", 
      "same value", 
      "feed-forward architecture", 
      "network", 
      "topology", 
      "distribution", 
      "neuronal networks", 
      "connectivity", 
      "density", 
      "epoch", 
      "dependent plasticity", 
      "equilibrium", 
      "structure", 
      "input", 
      "connected neurons", 
      "state", 
      "spontaneous activity", 
      "weight distribution", 
      "STDP", 
      "firing rate", 
      "high density", 
      "low density", 
      "conditions", 
      "asymmetry", 
      "values", 
      "neuronal activity", 
      "disperses", 
      "article", 
      "additive STDP", 
      "emergence", 
      "architecture", 
      "effect", 
      "rate", 
      "previous studies", 
      "activity", 
      "neurons", 
      "plasticity", 
      "competition", 
      "contrast", 
      "study", 
      "impact", 
      "beginning", 
      "absence", 
      "example"
    ], 
    "name": "Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity", 
    "pagination": "411", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036787336"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-009-0343-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19937071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-009-0343-4", 
      "https://app.dimensions.ai/details/publication/pub.1036787336"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-009-0343-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0343-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0343-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0343-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0343-4'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      22 PREDICATES      100 URIs      80 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-009-0343-4 schema:about N182eb4e740e2401c9ab47b16fdd10f53
2 N38e4f0b0b2344c07bef152c64ee30848
3 N536ebc28e584433ba1a0f2b32545c4c7
4 N9f824a1ddef94ed4a3ab4ab1f9bda331
5 Na4e979487d6b4b1394ca390b39dad71c
6 Nd2dfb355fefb40b48a7913bff47bc4ed
7 anzsrc-for:02
8 anzsrc-for:0299
9 anzsrc-for:08
10 anzsrc-for:0801
11 anzsrc-for:17
12 anzsrc-for:1702
13 schema:author N88fe557cf0f54127bcab096a3567a222
14 schema:citation sg:pub.10.1007/978-1-84628-970-5
15 sg:pub.10.1007/s00422-007-0148-2
16 sg:pub.10.1007/s00422-008-0233-1
17 sg:pub.10.1007/s00422-009-0319-4
18 sg:pub.10.1007/s00422-009-0320-y
19 sg:pub.10.1007/s00422-009-0346-1
20 sg:pub.10.1007/s10827-007-0022-1
21 sg:pub.10.1038/383076a0
22 schema:datePublished 2009-11-24
23 schema:datePublishedReg 2009-11-24
24 schema:description In contrast to a feed-forward architecture, the weight dynamics induced by spike-timing-dependent plasticity (STDP) in a recurrent neuronal network is not yet well understood. In this article, we extend a previous study of the impact of additive STDP in a recurrent network that is driven by spontaneous activity (no external stimulating inputs) from a fully connected network to one that is only partially connected. The asymptotic state of the network is analyzed, and it is found that the equilibrium and stability conditions for the firing rates are similar for both full and partial connectivity: STDP causes the firing rates to converge toward the same value and remain quasi-homogeneous. However, when STDP induces strong weight competition, the connectivity affects the weight dynamics in that the distribution of the weights disperses more quickly for lower density than for higher density. The asymptotic weight distribution strongly depends upon that at the beginning of the learning epoch; consequently, homogeneous connectivity alone is not sufficient to obtain homogeneous neuronal activity. In the absence of external inputs, STDP can nevertheless generate structure in the network through autocorrelation effects, for example, by introducing asymmetry in network topology.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N5c9bcd65119a4ec48b76c34cd8449b80
29 Na500d5d813134e4094ad8e4299695afc
30 sg:journal.1081741
31 schema:keywords STDP
32 absence
33 activity
34 additive STDP
35 architecture
36 article
37 asymmetry
38 asymptotic states
39 asymptotic weight distribution
40 autocorrelation effects
41 beginning
42 competition
43 conditions
44 connected network
45 connected neurons
46 connectivity
47 contrast
48 density
49 dependent plasticity
50 disperses
51 distribution
52 dynamics
53 effect
54 emergence
55 epoch
56 equilibrium
57 example
58 external inputs
59 feed-forward architecture
60 firing rate
61 high density
62 homogeneous connectivity
63 impact
64 input
65 low density
66 network
67 network structure
68 network topology
69 neuronal activity
70 neuronal networks
71 neurons
72 partial connectivity
73 plasticity
74 previous studies
75 rate
76 recurrent networks
77 recurrent neuronal networks
78 same value
79 spontaneous activity
80 stability conditions
81 state
82 structure
83 study
84 topology
85 values
86 weight distribution
87 weight dynamics
88 schema:name Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity
89 schema:pagination 411
90 schema:productId N2f84355d50c14511a7a666faa4c54588
91 Nbfb00f971c5c4db4ae52f2b0231de28b
92 Neb892f593c8b497e95345f291c0fb4ac
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036787336
94 https://doi.org/10.1007/s00422-009-0343-4
95 schema:sdDatePublished 2022-05-20T07:25
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N68f90d1236d849439d84e512353016a8
98 schema:url https://doi.org/10.1007/s00422-009-0343-4
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N124fbb09ce094a49b36d0b2c6398e389 rdf:first sg:person.01361317114.20
103 rdf:rest N78657276cac94e7a8ada7752d2bf714d
104 N182eb4e740e2401c9ab47b16fdd10f53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Neuronal Plasticity
106 rdf:type schema:DefinedTerm
107 N2f84355d50c14511a7a666faa4c54588 schema:name doi
108 schema:value 10.1007/s00422-009-0343-4
109 rdf:type schema:PropertyValue
110 N38e4f0b0b2344c07bef152c64ee30848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Action Potentials
112 rdf:type schema:DefinedTerm
113 N4d300fb1594b421b846808613b87405e rdf:first sg:person.01066247102.81
114 rdf:rest rdf:nil
115 N536ebc28e584433ba1a0f2b32545c4c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Nerve Net
117 rdf:type schema:DefinedTerm
118 N55023425f57144af84879a8567bab9d0 rdf:first sg:person.0704026214.23
119 rdf:rest N124fbb09ce094a49b36d0b2c6398e389
120 N5c9bcd65119a4ec48b76c34cd8449b80 schema:volumeNumber 101
121 rdf:type schema:PublicationVolume
122 N68f90d1236d849439d84e512353016a8 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N78657276cac94e7a8ada7752d2bf714d rdf:first sg:person.01220740562.10
125 rdf:rest N4d300fb1594b421b846808613b87405e
126 N88fe557cf0f54127bcab096a3567a222 rdf:first sg:person.01362642406.55
127 rdf:rest N55023425f57144af84879a8567bab9d0
128 N9f824a1ddef94ed4a3ab4ab1f9bda331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Mathematics
130 rdf:type schema:DefinedTerm
131 Na4e979487d6b4b1394ca390b39dad71c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neurons
133 rdf:type schema:DefinedTerm
134 Na500d5d813134e4094ad8e4299695afc schema:issueNumber 5-6
135 rdf:type schema:PublicationIssue
136 Nbfb00f971c5c4db4ae52f2b0231de28b schema:name pubmed_id
137 schema:value 19937071
138 rdf:type schema:PropertyValue
139 Nd2dfb355fefb40b48a7913bff47bc4ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Time Factors
141 rdf:type schema:DefinedTerm
142 Neb892f593c8b497e95345f291c0fb4ac schema:name dimensions_id
143 schema:value pub.1036787336
144 rdf:type schema:PropertyValue
145 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
146 schema:name Physical Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
149 schema:name Other Physical Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
152 schema:name Information and Computing Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
155 schema:name Artificial Intelligence and Image Processing
156 rdf:type schema:DefinedTerm
157 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
158 schema:name Psychology and Cognitive Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
161 schema:name Cognitive Sciences
162 rdf:type schema:DefinedTerm
163 sg:journal.1081741 schema:issn 0340-1200
164 1432-0770
165 schema:name Biological Cybernetics
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01066247102.81 schema:affiliation grid-institutes:grid.6936.a
169 schema:familyName van Hemmen
170 schema:givenName J. Leo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
172 rdf:type schema:Person
173 sg:person.01220740562.10 schema:affiliation grid-institutes:None
174 schema:familyName Thomas
175 schema:givenName Doreen A.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10
177 rdf:type schema:Person
178 sg:person.01361317114.20 schema:affiliation grid-institutes:None
179 schema:familyName Grayden
180 schema:givenName David B.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20
182 rdf:type schema:Person
183 sg:person.01362642406.55 schema:affiliation grid-institutes:None
184 schema:familyName Gilson
185 schema:givenName Matthieu
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
187 rdf:type schema:Person
188 sg:person.0704026214.23 schema:affiliation grid-institutes:None
189 schema:familyName Burkitt
190 schema:givenName Anthony N.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23
192 rdf:type schema:Person
193 sg:pub.10.1007/978-1-84628-970-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109706182
194 https://doi.org/10.1007/978-1-84628-970-5
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00422-007-0148-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010529867
197 https://doi.org/10.1007/s00422-007-0148-2
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00422-008-0233-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045495873
200 https://doi.org/10.1007/s00422-008-0233-1
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00422-009-0319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034695944
203 https://doi.org/10.1007/s00422-009-0319-4
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00422-009-0320-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037020006
206 https://doi.org/10.1007/s00422-009-0320-y
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00422-009-0346-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038215342
209 https://doi.org/10.1007/s00422-009-0346-1
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s10827-007-0022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049987717
212 https://doi.org/10.1007/s10827-007-0022-1
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
215 https://doi.org/10.1038/383076a0
216 rdf:type schema:CreativeWork
217 grid-institutes:None schema:alternateName NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia
218 schema:name Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia
219 NICTA, Victoria Research Lab, University of Melbourne, 3010, Melbourne, VIC, Australia
220 The Bionic Ear Institute, 384-388 Albert St., 3002, East Melbourne, VIC, Australia
221 rdf:type schema:Organization
222 grid-institutes:grid.6936.a schema:alternateName Physik Department (T35) and BCCN–Munich, Technische Universität München, 85747, Garching bei München, Germany
223 schema:name Physik Department (T35) and BCCN–Munich, Technische Universität München, 85747, Garching bei München, Germany
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...