Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity—symmetry breaking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06-18

AUTHORS

Matthieu Gilson, Anthony N. Burkitt, David B. Grayden, Doreen A. Thomas, J. Leo van Hemmen

ABSTRACT

Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network. More... »

PAGES

103-114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-009-0320-y

DOI

http://dx.doi.org/10.1007/s00422-009-0320-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037020006

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19536559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synaptic Transmission", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.425461.0", 
          "name": [
            "Department of Electrical and Electronic Engineering, University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St, 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "Matthieu", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.425461.0", 
          "name": [
            "Department of Electrical and Electronic Engineering, University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St, 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkitt", 
        "givenName": "Anthony N.", 
        "id": "sg:person.0704026214.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.425461.0", 
          "name": [
            "Department of Electrical and Electronic Engineering, University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "The Bionic Ear Institute, 384-388 Albert St, 3002, East Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grayden", 
        "givenName": "David B.", 
        "id": "sg:person.01361317114.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.425461.0", 
          "name": [
            "Department of Electrical and Electronic Engineering, University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Doreen A.", 
        "id": "sg:person.01220740562.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physik Department (T35), BCCN Munich, Technische Universit\u00e4t M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department (T35), BCCN Munich, Technische Universit\u00e4t M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Hemmen", 
        "givenName": "J. Leo", 
        "id": "sg:person.01066247102.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00422-005-0006-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041719925", 
          "https://doi.org/10.1007/s00422-005-0006-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-007-0148-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010529867", 
          "https://doi.org/10.1007/s00422-007-0148-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-008-0233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045495873", 
          "https://doi.org/10.1007/s00422-008-0233-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383076a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183215", 
          "https://doi.org/10.1038/383076a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-009-0319-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034695944", 
          "https://doi.org/10.1007/s00422-009-0319-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020503948", 
          "https://doi.org/10.1007/bf00288907"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06-18", 
    "datePublishedReg": "2009-06-18", 
    "description": "Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-009-0320-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "keywords": [
      "neuronal networks", 
      "spike-time correlations", 
      "constant firing rate", 
      "synaptic connections", 
      "excitatory recurrent connections", 
      "firing rate", 
      "neurons", 
      "individual neurons", 
      "recurrent neuronal networks", 
      "dependent plasticity", 
      "firing dynamics", 
      "neuronal firing dynamics", 
      "asymptotic weight distribution", 
      "input pool", 
      "weight", 
      "Poisson neuron model", 
      "STDP", 
      "synaptic weights", 
      "correlation", 
      "plasticity", 
      "recurrent connections", 
      "pool", 
      "neuron model", 
      "activity", 
      "rate", 
      "effect", 
      "presence", 
      "changes", 
      "input connections", 
      "analysis", 
      "recurrent weights", 
      "connection", 
      "emergence", 
      "turn", 
      "model", 
      "distribution", 
      "functional structure", 
      "order", 
      "strength", 
      "input", 
      "weight distribution", 
      "network", 
      "connected network", 
      "structure", 
      "dynamics", 
      "evolution", 
      "paper", 
      "input weights", 
      "network structure", 
      "symmetry", 
      "breaking", 
      "symmetry-breaking effects"
    ], 
    "name": "Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity\u2014symmetry breaking", 
    "pagination": "103-114", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037020006"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-009-0320-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19536559"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-009-0320-y", 
      "https://app.dimensions.ai/details/publication/pub.1037020006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_477.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-009-0320-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0320-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0320-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0320-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-009-0320-y'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      101 URIs      82 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-009-0320-y schema:about N0a55bf947808457d8302c5a94e16beab
2 N19bbf622a46746b38ff9d147da3f5125
3 N2ac44abb1ec54e4dac1a81f0aca15066
4 N44ff500459b94f6da996e0fb090789ec
5 N4a844abcc6914363afc74efcc68485c7
6 N8454fe59bc7d49f1b02a9c2edd23c7ef
7 N8c2a89f51ede497bad00aa3f8bf1bdb5
8 Na6753cc5ae6f4c94a9430bb2b6113e99
9 Nca6afb647df74277a4e3b403dcfb760b
10 Nd043dee153314b44ae53ded4ae1cca47
11 Nd6cd506ff98d4f6c98ef351d5f12c4ee
12 Nd80481004dca4167a0dbb38072802ac5
13 anzsrc-for:02
14 anzsrc-for:0299
15 anzsrc-for:08
16 anzsrc-for:0801
17 anzsrc-for:17
18 anzsrc-for:1702
19 schema:author N5ef0f17f19204ceb800067121267a036
20 schema:citation sg:pub.10.1007/bf00288907
21 sg:pub.10.1007/bf00337288
22 sg:pub.10.1007/s00422-005-0006-z
23 sg:pub.10.1007/s00422-007-0148-2
24 sg:pub.10.1007/s00422-008-0233-1
25 sg:pub.10.1007/s00422-009-0319-4
26 sg:pub.10.1038/383076a0
27 schema:datePublished 2009-06-18
28 schema:datePublishedReg 2009-06-18
29 schema:description Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N7710c27b855c4eb982ffe8939894f62d
34 N9ea809e313164a14a1b7908d1411eb0b
35 sg:journal.1081741
36 schema:keywords Poisson neuron model
37 STDP
38 activity
39 analysis
40 asymptotic weight distribution
41 breaking
42 changes
43 connected network
44 connection
45 constant firing rate
46 correlation
47 dependent plasticity
48 distribution
49 dynamics
50 effect
51 emergence
52 evolution
53 excitatory recurrent connections
54 firing dynamics
55 firing rate
56 functional structure
57 individual neurons
58 input
59 input connections
60 input pool
61 input weights
62 model
63 network
64 network structure
65 neuron model
66 neuronal firing dynamics
67 neuronal networks
68 neurons
69 order
70 paper
71 plasticity
72 pool
73 presence
74 rate
75 recurrent connections
76 recurrent neuronal networks
77 recurrent weights
78 spike-time correlations
79 strength
80 structure
81 symmetry
82 symmetry-breaking effects
83 synaptic connections
84 synaptic weights
85 turn
86 weight
87 weight distribution
88 schema:name Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity—symmetry breaking
89 schema:pagination 103-114
90 schema:productId N2b90b2d86eac44ddb8acc7536b47b0e9
91 N73d63873687f40fab96b0f39a08398e1
92 N757df917ba6b4db983e785d7b4657021
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037020006
94 https://doi.org/10.1007/s00422-009-0320-y
95 schema:sdDatePublished 2022-05-20T07:25
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Nd1b4a9dead534430b64bfcc895a7a4ed
98 schema:url https://doi.org/10.1007/s00422-009-0320-y
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0a55bf947808457d8302c5a94e16beab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computer Simulation
104 rdf:type schema:DefinedTerm
105 N19bbf622a46746b38ff9d147da3f5125 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Learning
107 rdf:type schema:DefinedTerm
108 N2ac44abb1ec54e4dac1a81f0aca15066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Neural Networks, Computer
110 rdf:type schema:DefinedTerm
111 N2b90b2d86eac44ddb8acc7536b47b0e9 schema:name doi
112 schema:value 10.1007/s00422-009-0320-y
113 rdf:type schema:PropertyValue
114 N44ff500459b94f6da996e0fb090789ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Animals
116 rdf:type schema:DefinedTerm
117 N4a844abcc6914363afc74efcc68485c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neuronal Plasticity
119 rdf:type schema:DefinedTerm
120 N5630f18928e34ff199dad799f48c4836 rdf:first sg:person.01361317114.20
121 rdf:rest N6a0208df8a774442be879c3f6c2ad77b
122 N5ef0f17f19204ceb800067121267a036 rdf:first sg:person.01362642406.55
123 rdf:rest N85f878b15bd941689548a2fafa830633
124 N6a0208df8a774442be879c3f6c2ad77b rdf:first sg:person.01220740562.10
125 rdf:rest Nebd4e88eecf54708a847635e1eba45cb
126 N73d63873687f40fab96b0f39a08398e1 schema:name pubmed_id
127 schema:value 19536559
128 rdf:type schema:PropertyValue
129 N757df917ba6b4db983e785d7b4657021 schema:name dimensions_id
130 schema:value pub.1037020006
131 rdf:type schema:PropertyValue
132 N7710c27b855c4eb982ffe8939894f62d schema:issueNumber 2
133 rdf:type schema:PublicationIssue
134 N8454fe59bc7d49f1b02a9c2edd23c7ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Synapses
136 rdf:type schema:DefinedTerm
137 N85f878b15bd941689548a2fafa830633 rdf:first sg:person.0704026214.23
138 rdf:rest N5630f18928e34ff199dad799f48c4836
139 N8c2a89f51ede497bad00aa3f8bf1bdb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Nerve Net
141 rdf:type schema:DefinedTerm
142 N9ea809e313164a14a1b7908d1411eb0b schema:volumeNumber 101
143 rdf:type schema:PublicationVolume
144 Na6753cc5ae6f4c94a9430bb2b6113e99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Models, Neurological
146 rdf:type schema:DefinedTerm
147 Nca6afb647df74277a4e3b403dcfb760b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Neurons
149 rdf:type schema:DefinedTerm
150 Nd043dee153314b44ae53ded4ae1cca47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Poisson Distribution
152 rdf:type schema:DefinedTerm
153 Nd1b4a9dead534430b64bfcc895a7a4ed schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 Nd6cd506ff98d4f6c98ef351d5f12c4ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Synaptic Transmission
157 rdf:type schema:DefinedTerm
158 Nd80481004dca4167a0dbb38072802ac5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Action Potentials
160 rdf:type schema:DefinedTerm
161 Nebd4e88eecf54708a847635e1eba45cb rdf:first sg:person.01066247102.81
162 rdf:rest rdf:nil
163 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
164 schema:name Physical Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
167 schema:name Other Physical Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
170 schema:name Information and Computing Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
173 schema:name Artificial Intelligence and Image Processing
174 rdf:type schema:DefinedTerm
175 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
176 schema:name Psychology and Cognitive Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
179 schema:name Cognitive Sciences
180 rdf:type schema:DefinedTerm
181 sg:journal.1081741 schema:issn 0340-1200
182 1432-0770
183 schema:name Biological Cybernetics
184 schema:publisher Springer Nature
185 rdf:type schema:Periodical
186 sg:person.01066247102.81 schema:affiliation grid-institutes:grid.6936.a
187 schema:familyName van Hemmen
188 schema:givenName J. Leo
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
190 rdf:type schema:Person
191 sg:person.01220740562.10 schema:affiliation grid-institutes:grid.425461.0
192 schema:familyName Thomas
193 schema:givenName Doreen A.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220740562.10
195 rdf:type schema:Person
196 sg:person.01361317114.20 schema:affiliation grid-institutes:grid.425461.0
197 schema:familyName Grayden
198 schema:givenName David B.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361317114.20
200 rdf:type schema:Person
201 sg:person.01362642406.55 schema:affiliation grid-institutes:grid.425461.0
202 schema:familyName Gilson
203 schema:givenName Matthieu
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
205 rdf:type schema:Person
206 sg:person.0704026214.23 schema:affiliation grid-institutes:grid.425461.0
207 schema:familyName Burkitt
208 schema:givenName Anthony N.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23
210 rdf:type schema:Person
211 sg:pub.10.1007/bf00288907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503948
212 https://doi.org/10.1007/bf00288907
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
215 https://doi.org/10.1007/bf00337288
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00422-005-0006-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041719925
218 https://doi.org/10.1007/s00422-005-0006-z
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s00422-007-0148-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010529867
221 https://doi.org/10.1007/s00422-007-0148-2
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00422-008-0233-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045495873
224 https://doi.org/10.1007/s00422-008-0233-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00422-009-0319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034695944
227 https://doi.org/10.1007/s00422-009-0319-4
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
230 https://doi.org/10.1038/383076a0
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.425461.0 schema:alternateName NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia
233 schema:name Department of Electrical and Electronic Engineering, University of Melbourne, 3010, Melbourne, VIC, Australia
234 NICTA, Victoria Research Lab, 3010, Melbourne, VIC, Australia
235 The Bionic Ear Institute, 384-388 Albert St, 3002, East Melbourne, VIC, Australia
236 rdf:type schema:Organization
237 grid-institutes:grid.6936.a schema:alternateName Physik Department (T35), BCCN Munich, Technische Universität München, 85747, Garching bei München, Germany
238 schema:name Physik Department (T35), BCCN Munich, Technische Universität München, 85747, Garching bei München, Germany
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...