The response of cortical neurons to in vivo-like input current: theory and experiment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11-05

AUTHORS

Giancarlo La Camera, Michele Giugliano, Walter Senn, Stefano Fusi

ABSTRACT

The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro. More... »

PAGES

279-301

References to SciGraph publications

  • 2008-11-15. The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs in BIOLOGICAL CYBERNETICS
  • 2000-01. A Population Density Approach That Facilitates Large-Scale Modeling of Neural Networks: Analysis and an Application to Orientation Tuning in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1976. Models of the Stochastic Activity of Neurones in NONE
  • 2002-08-21. Non-monotonic Current-to-Rate Response Function in a Novel Integrate-and-Fire Model Neuron in ARTIFICIAL NEURAL NETWORKS — ICANN 2002
  • 2001-01. Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1988-10. Neuronal correlate of visual associative long-term memory in the primate temporal cortex in NATURE
  • 2001-09. Synaptic scaling in vitro and in vivo in NATURE NEUROSCIENCE
  • 2000-05. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2001-10. Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials in BIOLOGICAL CYBERNETICS
  • 2007-05-30. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1991. Anatomy of the Cortex, Statistics and Geometry in NONE
  • 2003-06-05. Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input in BIOLOGICAL CYBERNETICS
  • 2007-11-29. Quantitative investigations of electrical nerve excitation treated as polarization in BIOLOGICAL CYBERNETICS
  • 2006-04-19. A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input in BIOLOGICAL CYBERNETICS
  • 1971-06. Diffusion approximation and first passage time problem for a model neuron in KYBERNETIK
  • 2002-03. Cortical heterogeneity: Implications for visual processing and polysensory integration in BRAIN CELL BIOLOGY
  • 2001-07. Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2007-04-14. Threshold fatigue and information transfer in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1989-07. Unit activity in monkey parietal cortex related to haptic perception and temporary memory in EXPERIMENTAL BRAIN RESEARCH
  • 2007-10-30. Lapicque’s 1907 paper: from frogs to integrate-and-fire in BIOLOGICAL CYBERNETICS
  • 2005-06. Dynamics of the Instantaneous Firing Rate in Response to Changes in Input Statistics in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1988-01. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita in NATURE
  • 1987-04. Diffusion approximation of the neuronal model with synaptic reversal potentials in BIOLOGICAL CYBERNETICS
  • 2002-03. Neocortical circuits: Evolutionary aspects and specificity versus non-specificity of synaptic connections. Remarks, main conclusions and general comments and discussion in BRAIN CELL BIOLOGY
  • 1998-08. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations in NATURE NEUROSCIENCE
  • 2006-04-22. Predicting spike timing of neocortical pyramidal neurons by simple threshold models in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1968. Diffusion Models for the Stochastic Activity of Neurons in NEURAL NETWORKS
  • 2002-08-21. Firing Rate Adaptation without Losing Sensitivity to Input Fluctuations in ARTIFICIAL NEURAL NETWORKS — ICANN 2002
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00422-008-0272-7

    DOI

    http://dx.doi.org/10.1007/s00422-008-0272-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045014015

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18985378


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cerebral Cortex", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49 Convent Dr, Rm 1B80, 20892, Bethesda, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.416868.5", 
              "name": [
                "Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49 Convent Dr, Rm 1B80, 20892, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "La Camera", 
            "givenName": "Giancarlo", 
            "id": "sg:person.01131460265.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5284.b", 
              "name": [
                "Laboratory of Neural Microcircuitry, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Lausanne, Switzerland", 
                "Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giugliano", 
            "givenName": "Michele", 
            "id": "sg:person.01264211506.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264211506.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physiology, University of Bern, Bern, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Institute of Physiology, University of Bern, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senn", 
            "givenName": "Walter", 
            "id": "sg:person.01152027440.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Neuroinformatics, University of Zurich-ETH, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Center for Theoretical Neuroscience, Columbia University, College of Physicians and Surgeons, New York, NY, USA", 
                "Institute for Neuroinformatics, University of Zurich-ETH, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fusi", 
            "givenName": "Stefano", 
            "id": "sg:person.01326702501.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-87596-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021536727", 
              "https://doi.org/10.1007/978-3-642-87596-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/335817a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029719037", 
              "https://doi.org/10.1038/335817a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-008-0270-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037736423", 
              "https://doi.org/10.1007/s00422-008-0270-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46084-5_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041709623", 
              "https://doi.org/10.1007/3-540-46084-5_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008912914816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049294956", 
              "https://doi.org/10.1023/a:1008912914816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-46345-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049706095", 
              "https://doi.org/10.1007/978-3-642-46345-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-006-7074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042355695", 
              "https://doi.org/10.1007/s10827-006-7074-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-005-0337-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002120634", 
              "https://doi.org/10.1007/s10827-005-0337-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46084-5_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029762942", 
              "https://doi.org/10.1007/3-540-46084-5_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-007-0033-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045303718", 
              "https://doi.org/10.1007/s10827-007-0033-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00288750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013253585", 
              "https://doi.org/10.1007/bf00288750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024182228103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053526744", 
              "https://doi.org/10.1023/a:1024182228103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02728-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027579457", 
              "https://doi.org/10.1007/978-3-662-02728-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-006-0068-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043536093", 
              "https://doi.org/10.1007/s00422-006-0068-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021881118", 
              "https://doi.org/10.1038/1131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00333064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053539980", 
              "https://doi.org/10.1007/bf00333064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-007-0189-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034496676", 
              "https://doi.org/10.1007/s00422-007-0189-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011204814320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013341710", 
              "https://doi.org/10.1023/a:1011204814320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004220100262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021116012", 
              "https://doi.org/10.1007/s004220100262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008916026143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022896449", 
              "https://doi.org/10.1023/a:1008916026143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/331068a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017378404", 
              "https://doi.org/10.1038/331068a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn0901-853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050048242", 
              "https://doi.org/10.1038/nn0901-853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-007-0044-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023771708", 
              "https://doi.org/10.1007/s10827-007-0044-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00247889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003306412", 
              "https://doi.org/10.1007/bf00247889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008925309027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001166884", 
              "https://doi.org/10.1023/a:1008925309027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-003-0408-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028004829", 
              "https://doi.org/10.1007/s00422-003-0408-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024142513991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039196200", 
              "https://doi.org/10.1023/a:1024142513991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-007-0190-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023525835", 
              "https://doi.org/10.1007/s00422-007-0190-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-11-05", 
        "datePublishedReg": "2008-11-05", 
        "description": "The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00422-008-0272-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081741", 
            "issn": [
              "0340-1200", 
              "1432-0770"
            ], 
            "name": "Biological Cybernetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4-5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "99"
          }
        ], 
        "keywords": [
          "fire neuron model", 
          "neuron model", 
          "time-varying inputs", 
          "relevant dynamical aspects", 
          "stationary statistics", 
          "equilibrium point", 
          "network dynamics", 
          "collective dynamics", 
          "response function", 
          "noisy input", 
          "real neurons", 
          "dynamical aspects", 
          "neural dynamics", 
          "statistics", 
          "companion paper", 
          "simple integrate", 
          "dynamics", 
          "neuronal responses", 
          "input", 
          "input current", 
          "noisy", 
          "model", 
          "function", 
          "integrate", 
          "theory", 
          "assumption", 
          "cortical neurons", 
          "decision making", 
          "synaptic inputs", 
          "synaptic currents", 
          "experimental results", 
          "cognitive function", 
          "neurons", 
          "neural responses", 
          "neural substrates", 
          "applications", 
          "point", 
          "large population", 
          "response", 
          "experiments", 
          "cases", 
          "aspects", 
          "results", 
          "population", 
          "current", 
          "making", 
          "study", 
          "memory", 
          "substrate", 
          "paper", 
          "collective neural dynamics", 
          "vivo-like input current"
        ], 
        "name": "The response of cortical neurons to in vivo-like input current: theory and experiment", 
        "pagination": "279-301", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045014015"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00422-008-0272-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18985378"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00422-008-0272-7", 
          "https://app.dimensions.ai/details/publication/pub.1045014015"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_455.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00422-008-0272-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-008-0272-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-008-0272-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-008-0272-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-008-0272-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    294 TRIPLES      22 PREDICATES      115 URIs      75 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00422-008-0272-7 schema:about N67a86fd0d0644976bd918f0160cc0813
    2 Na3579522ae4c44279c920623dcd5f548
    3 Nc3c0e390324143788d4ef744685b2b2a
    4 Ncd8aea1a064444148a029b65dbb7e468
    5 Ndf4c288ca7d04fde80258efac4416d97
    6 anzsrc-for:02
    7 anzsrc-for:0299
    8 anzsrc-for:08
    9 anzsrc-for:0801
    10 anzsrc-for:17
    11 anzsrc-for:1702
    12 schema:author Ncaf940345f37453ea8d7b91b5f119eb9
    13 schema:citation sg:pub.10.1007/3-540-46084-5_24
    14 sg:pub.10.1007/3-540-46084-5_30
    15 sg:pub.10.1007/978-3-642-46345-7
    16 sg:pub.10.1007/978-3-642-87596-0_11
    17 sg:pub.10.1007/978-3-662-02728-8
    18 sg:pub.10.1007/bf00247889
    19 sg:pub.10.1007/bf00288750
    20 sg:pub.10.1007/bf00333064
    21 sg:pub.10.1007/s00422-003-0408-8
    22 sg:pub.10.1007/s00422-006-0068-6
    23 sg:pub.10.1007/s00422-007-0189-6
    24 sg:pub.10.1007/s00422-007-0190-0
    25 sg:pub.10.1007/s00422-008-0270-9
    26 sg:pub.10.1007/s004220100262
    27 sg:pub.10.1007/s10827-005-0337-8
    28 sg:pub.10.1007/s10827-006-7074-5
    29 sg:pub.10.1007/s10827-007-0033-y
    30 sg:pub.10.1007/s10827-007-0044-8
    31 sg:pub.10.1023/a:1008912914816
    32 sg:pub.10.1023/a:1008916026143
    33 sg:pub.10.1023/a:1008925309027
    34 sg:pub.10.1023/a:1011204814320
    35 sg:pub.10.1023/a:1024142513991
    36 sg:pub.10.1023/a:1024182228103
    37 sg:pub.10.1038/1131
    38 sg:pub.10.1038/331068a0
    39 sg:pub.10.1038/335817a0
    40 sg:pub.10.1038/nn0901-853
    41 schema:datePublished 2008-11-05
    42 schema:datePublishedReg 2008-11-05
    43 schema:description The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.
    44 schema:genre article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N80c268c46edd4022b33d08789b774cd6
    48 Nb34bb40b990e4d1ea021747c25f57c23
    49 sg:journal.1081741
    50 schema:keywords applications
    51 aspects
    52 assumption
    53 cases
    54 cognitive function
    55 collective dynamics
    56 collective neural dynamics
    57 companion paper
    58 cortical neurons
    59 current
    60 decision making
    61 dynamical aspects
    62 dynamics
    63 equilibrium point
    64 experimental results
    65 experiments
    66 fire neuron model
    67 function
    68 input
    69 input current
    70 integrate
    71 large population
    72 making
    73 memory
    74 model
    75 network dynamics
    76 neural dynamics
    77 neural responses
    78 neural substrates
    79 neuron model
    80 neuronal responses
    81 neurons
    82 noisy
    83 noisy input
    84 paper
    85 point
    86 population
    87 real neurons
    88 relevant dynamical aspects
    89 response
    90 response function
    91 results
    92 simple integrate
    93 stationary statistics
    94 statistics
    95 study
    96 substrate
    97 synaptic currents
    98 synaptic inputs
    99 theory
    100 time-varying inputs
    101 vivo-like input current
    102 schema:name The response of cortical neurons to in vivo-like input current: theory and experiment
    103 schema:pagination 279-301
    104 schema:productId N462be31748724465bb0f252adfc12f09
    105 N98e3fa37fb62430d9face31fba1be61c
    106 Nc602db549e644f5ab19dcc7f10124c63
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045014015
    108 https://doi.org/10.1007/s00422-008-0272-7
    109 schema:sdDatePublished 2021-12-01T19:20
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nde3a626c14e94fc493a5e03e1ec9affd
    112 schema:url https://doi.org/10.1007/s00422-008-0272-7
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N1e3c3f383c7943afacc4bff2b081098d rdf:first sg:person.01152027440.28
    117 rdf:rest N959ab07e5fbe47f6a4b08865778b30cf
    118 N462be31748724465bb0f252adfc12f09 schema:name pubmed_id
    119 schema:value 18985378
    120 rdf:type schema:PropertyValue
    121 N67a86fd0d0644976bd918f0160cc0813 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Neurons
    123 rdf:type schema:DefinedTerm
    124 N80c268c46edd4022b33d08789b774cd6 schema:issueNumber 4-5
    125 rdf:type schema:PublicationIssue
    126 N959ab07e5fbe47f6a4b08865778b30cf rdf:first sg:person.01326702501.50
    127 rdf:rest rdf:nil
    128 N98e3fa37fb62430d9face31fba1be61c schema:name dimensions_id
    129 schema:value pub.1045014015
    130 rdf:type schema:PropertyValue
    131 Na3579522ae4c44279c920623dcd5f548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Humans
    133 rdf:type schema:DefinedTerm
    134 Nb34bb40b990e4d1ea021747c25f57c23 schema:volumeNumber 99
    135 rdf:type schema:PublicationVolume
    136 Nc3c0e390324143788d4ef744685b2b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Models, Neurological
    138 rdf:type schema:DefinedTerm
    139 Nc602db549e644f5ab19dcc7f10124c63 schema:name doi
    140 schema:value 10.1007/s00422-008-0272-7
    141 rdf:type schema:PropertyValue
    142 Ncaf940345f37453ea8d7b91b5f119eb9 rdf:first sg:person.01131460265.13
    143 rdf:rest Nd9ced25812c5454fa1a513d40474b423
    144 Ncd8aea1a064444148a029b65dbb7e468 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Cerebral Cortex
    146 rdf:type schema:DefinedTerm
    147 Nd9ced25812c5454fa1a513d40474b423 rdf:first sg:person.01264211506.06
    148 rdf:rest N1e3c3f383c7943afacc4bff2b081098d
    149 Nde3a626c14e94fc493a5e03e1ec9affd schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 Ndf4c288ca7d04fde80258efac4416d97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Animals
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Physical Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Other Physical Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Information and Computing Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Artificial Intelligence and Image Processing
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Psychology and Cognitive Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Cognitive Sciences
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1081741 schema:issn 0340-1200
    173 1432-0770
    174 schema:name Biological Cybernetics
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.01131460265.13 schema:affiliation grid-institutes:grid.416868.5
    178 schema:familyName La Camera
    179 schema:givenName Giancarlo
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131460265.13
    181 rdf:type schema:Person
    182 sg:person.01152027440.28 schema:affiliation grid-institutes:grid.5734.5
    183 schema:familyName Senn
    184 schema:givenName Walter
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152027440.28
    186 rdf:type schema:Person
    187 sg:person.01264211506.06 schema:affiliation grid-institutes:grid.5284.b
    188 schema:familyName Giugliano
    189 schema:givenName Michele
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264211506.06
    191 rdf:type schema:Person
    192 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.7400.3
    193 schema:familyName Fusi
    194 schema:givenName Stefano
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
    196 rdf:type schema:Person
    197 sg:pub.10.1007/3-540-46084-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041709623
    198 https://doi.org/10.1007/3-540-46084-5_24
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/3-540-46084-5_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029762942
    201 https://doi.org/10.1007/3-540-46084-5_30
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/978-3-642-46345-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049706095
    204 https://doi.org/10.1007/978-3-642-46345-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/978-3-642-87596-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021536727
    207 https://doi.org/10.1007/978-3-642-87596-0_11
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/978-3-662-02728-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027579457
    210 https://doi.org/10.1007/978-3-662-02728-8
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf00247889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003306412
    213 https://doi.org/10.1007/bf00247889
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf00288750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013253585
    216 https://doi.org/10.1007/bf00288750
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf00333064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053539980
    219 https://doi.org/10.1007/bf00333064
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s00422-003-0408-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028004829
    222 https://doi.org/10.1007/s00422-003-0408-8
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00422-006-0068-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043536093
    225 https://doi.org/10.1007/s00422-006-0068-6
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00422-007-0189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034496676
    228 https://doi.org/10.1007/s00422-007-0189-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00422-007-0190-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023525835
    231 https://doi.org/10.1007/s00422-007-0190-0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00422-008-0270-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037736423
    234 https://doi.org/10.1007/s00422-008-0270-9
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s004220100262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021116012
    237 https://doi.org/10.1007/s004220100262
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s10827-005-0337-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002120634
    240 https://doi.org/10.1007/s10827-005-0337-8
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s10827-006-7074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042355695
    243 https://doi.org/10.1007/s10827-006-7074-5
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s10827-007-0033-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303718
    246 https://doi.org/10.1007/s10827-007-0033-y
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10827-007-0044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023771708
    249 https://doi.org/10.1007/s10827-007-0044-8
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1023/a:1008912914816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049294956
    252 https://doi.org/10.1023/a:1008912914816
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1023/a:1008916026143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022896449
    255 https://doi.org/10.1023/a:1008916026143
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1023/a:1008925309027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001166884
    258 https://doi.org/10.1023/a:1008925309027
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1023/a:1011204814320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013341710
    261 https://doi.org/10.1023/a:1011204814320
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1023/a:1024142513991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039196200
    264 https://doi.org/10.1023/a:1024142513991
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1023/a:1024182228103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053526744
    267 https://doi.org/10.1023/a:1024182228103
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021881118
    270 https://doi.org/10.1038/1131
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/331068a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017378404
    273 https://doi.org/10.1038/331068a0
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/335817a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029719037
    276 https://doi.org/10.1038/335817a0
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nn0901-853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050048242
    279 https://doi.org/10.1038/nn0901-853
    280 rdf:type schema:CreativeWork
    281 grid-institutes:grid.416868.5 schema:alternateName Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49 Convent Dr, Rm 1B80, 20892, Bethesda, MD, USA
    282 schema:name Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49 Convent Dr, Rm 1B80, 20892, Bethesda, MD, USA
    283 rdf:type schema:Organization
    284 grid-institutes:grid.5284.b schema:alternateName Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium
    285 schema:name Laboratory of Neural Microcircuitry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    286 Theoretical Neurobiology, University of Antwerp, Wilrijk, Belgium
    287 rdf:type schema:Organization
    288 grid-institutes:grid.5734.5 schema:alternateName Institute of Physiology, University of Bern, Bern, Switzerland
    289 schema:name Institute of Physiology, University of Bern, Bern, Switzerland
    290 rdf:type schema:Organization
    291 grid-institutes:grid.7400.3 schema:alternateName Institute for Neuroinformatics, University of Zurich-ETH, Zurich, Switzerland
    292 schema:name Center for Theoretical Neuroscience, Columbia University, College of Physicians and Surgeons, New York, NY, USA
    293 Institute for Neuroinformatics, University of Zurich-ETH, Zurich, Switzerland
    294 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...