Spike-timing-dependent plasticity for neurons with recurrent connections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04-06

AUTHORS

A. N. Burkitt, M. Gilson, J. L. van Hemmen

ABSTRACT

The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed. More... »

PAGES

533-546

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-007-0148-2

DOI

http://dx.doi.org/10.1007/s00422-007-0148-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010529867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17415586


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Communication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Otolaryngology, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "The Bionic Ear Institute, 384\u2013388 Albert Street, 3002, East Melbourne, VIC, Australia", 
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
            "Department of Otolaryngology, The University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkitt", 
        "givenName": "A. N.", 
        "id": "sg:person.0704026214.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "The Bionic Ear Institute, 384\u2013388 Albert Street, 3002, East Melbourne, VIC, Australia", 
            "Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilson", 
        "givenName": "M.", 
        "id": "sg:person.01362642406.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physik Department, TU M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department, TU M\u00fcnchen, 85747, Garching bei M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Hemmen", 
        "givenName": "J. L.", 
        "id": "sg:person.01066247102.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/383076a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183215", 
          "https://doi.org/10.1038/383076a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4575-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031483809", 
          "https://doi.org/10.1007/978-1-4757-4575-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/78829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009745377", 
          "https://doi.org/10.1038/78829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-003-0437-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355345", 
          "https://doi.org/10.1007/s00422-003-0437-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04-06", 
    "datePublishedReg": "2007-04-06", 
    "description": "The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-007-0148-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "96"
      }
    ], 
    "keywords": [
      "learning equation", 
      "fixed-point structure", 
      "equations", 
      "recurrent connections", 
      "neuron model", 
      "particular case", 
      "synaptic weights", 
      "solution", 
      "derivation", 
      "input", 
      "dependent plasticity", 
      "dynamics", 
      "connection", 
      "connected neurons", 
      "network", 
      "model", 
      "synaptic inputs", 
      "function", 
      "situation", 
      "cases", 
      "evolution", 
      "Poisson neuron model", 
      "neurons", 
      "analysis", 
      "structure", 
      "weight", 
      "plasticity", 
      "self", 
      "external synaptic inputs", 
      "general learning equation"
    ], 
    "name": "Spike-timing-dependent plasticity for neurons with recurrent connections", 
    "pagination": "533-546", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010529867"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-007-0148-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17415586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-007-0148-2", 
      "https://app.dimensions.ai/details/publication/pub.1010529867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_446.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-007-0148-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-007-0148-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-007-0148-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-007-0148-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-007-0148-2'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      73 URIs      57 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-007-0148-2 schema:about N0f3849330d2c4acfb48ecf488ca0b563
2 N2ececb6c9472451183a871560e28ec67
3 N36e18f50dc9248848edc8543e857913a
4 N387534a5540747e1b99379a2b4e6c7e7
5 N78384f2127d240409a0292a40983f431
6 N79e053c0676048a8a7930529981741f7
7 N92ad4c64954d4b9c9af40782898523ff
8 Nbfcbb7e5ba7d42bd8155d013bed4470c
9 Nfb8daa64b9d74801b99bc8549f5d293a
10 anzsrc-for:02
11 anzsrc-for:0299
12 anzsrc-for:08
13 anzsrc-for:0801
14 anzsrc-for:17
15 anzsrc-for:1702
16 schema:author N453b599bacff43e79bde6bd4187d41b4
17 schema:citation sg:pub.10.1007/978-1-4757-4575-7
18 sg:pub.10.1007/s00422-003-0437-3
19 sg:pub.10.1038/383076a0
20 sg:pub.10.1038/78829
21 schema:datePublished 2007-04-06
22 schema:datePublishedReg 2007-04-06
23 schema:description The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N6d62506905bd457fbc8c54290af2394c
28 Nfe71db46b4b64d5a9a70af8cfe52bef7
29 sg:journal.1081741
30 schema:keywords Poisson neuron model
31 analysis
32 cases
33 connected neurons
34 connection
35 dependent plasticity
36 derivation
37 dynamics
38 equations
39 evolution
40 external synaptic inputs
41 fixed-point structure
42 function
43 general learning equation
44 input
45 learning equation
46 model
47 network
48 neuron model
49 neurons
50 particular case
51 plasticity
52 recurrent connections
53 self
54 situation
55 solution
56 structure
57 synaptic inputs
58 synaptic weights
59 weight
60 schema:name Spike-timing-dependent plasticity for neurons with recurrent connections
61 schema:pagination 533-546
62 schema:productId N111032d7ba1347de8aef2e64cee60b51
63 Ncf37f0eb491f4d30a6ec18711757c386
64 Ne226412b46ba4560ae148be1dc2b9e4a
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010529867
66 https://doi.org/10.1007/s00422-007-0148-2
67 schema:sdDatePublished 2021-12-01T19:18
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nbb7974de09664347bcb3c3ba84ac16f2
70 schema:url https://doi.org/10.1007/s00422-007-0148-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0f3849330d2c4acfb48ecf488ca0b563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Neurons
76 rdf:type schema:DefinedTerm
77 N111032d7ba1347de8aef2e64cee60b51 schema:name dimensions_id
78 schema:value pub.1010529867
79 rdf:type schema:PropertyValue
80 N2ececb6c9472451183a871560e28ec67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Neuronal Plasticity
82 rdf:type schema:DefinedTerm
83 N36e18f50dc9248848edc8543e857913a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Poisson Distribution
85 rdf:type schema:DefinedTerm
86 N387534a5540747e1b99379a2b4e6c7e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cell Communication
88 rdf:type schema:DefinedTerm
89 N453b599bacff43e79bde6bd4187d41b4 rdf:first sg:person.0704026214.23
90 rdf:rest Naf38b674ae2a4bddb783e0d0eede830a
91 N6d62506905bd457fbc8c54290af2394c schema:issueNumber 5
92 rdf:type schema:PublicationIssue
93 N78384f2127d240409a0292a40983f431 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Mathematics
95 rdf:type schema:DefinedTerm
96 N79e053c0676048a8a7930529981741f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 N8182e08e818244e5a5842d108e600b5f rdf:first sg:person.01066247102.81
100 rdf:rest rdf:nil
101 N92ad4c64954d4b9c9af40782898523ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Learning
103 rdf:type schema:DefinedTerm
104 Naf38b674ae2a4bddb783e0d0eede830a rdf:first sg:person.01362642406.55
105 rdf:rest N8182e08e818244e5a5842d108e600b5f
106 Nbb7974de09664347bcb3c3ba84ac16f2 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nbfcbb7e5ba7d42bd8155d013bed4470c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Synapses
110 rdf:type schema:DefinedTerm
111 Ncf37f0eb491f4d30a6ec18711757c386 schema:name doi
112 schema:value 10.1007/s00422-007-0148-2
113 rdf:type schema:PropertyValue
114 Ne226412b46ba4560ae148be1dc2b9e4a schema:name pubmed_id
115 schema:value 17415586
116 rdf:type schema:PropertyValue
117 Nfb8daa64b9d74801b99bc8549f5d293a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Neurological
119 rdf:type schema:DefinedTerm
120 Nfe71db46b4b64d5a9a70af8cfe52bef7 schema:volumeNumber 96
121 rdf:type schema:PublicationVolume
122 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
123 schema:name Physical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
126 schema:name Other Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
135 schema:name Psychology and Cognitive Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
138 schema:name Cognitive Sciences
139 rdf:type schema:DefinedTerm
140 sg:journal.1081741 schema:issn 0340-1200
141 1432-0770
142 schema:name Biological Cybernetics
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.01066247102.81 schema:affiliation grid-institutes:grid.6936.a
146 schema:familyName van Hemmen
147 schema:givenName J. L.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
149 rdf:type schema:Person
150 sg:person.01362642406.55 schema:affiliation grid-institutes:grid.1008.9
151 schema:familyName Gilson
152 schema:givenName M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362642406.55
154 rdf:type schema:Person
155 sg:person.0704026214.23 schema:affiliation grid-institutes:grid.1008.9
156 schema:familyName Burkitt
157 schema:givenName A. N.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704026214.23
159 rdf:type schema:Person
160 sg:pub.10.1007/978-1-4757-4575-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031483809
161 https://doi.org/10.1007/978-1-4757-4575-7
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00422-003-0437-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355345
164 https://doi.org/10.1007/s00422-003-0437-3
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/383076a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
167 https://doi.org/10.1038/383076a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/78829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009745377
170 https://doi.org/10.1038/78829
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.1008.9 schema:alternateName Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia
173 Department of Otolaryngology, The University of Melbourne, 3010, Melbourne, VIC, Australia
174 schema:name Department of Electrical and Electronic Engineering, The University of Melbourne, 3010, Melbourne, VIC, Australia
175 Department of Otolaryngology, The University of Melbourne, 3010, Melbourne, VIC, Australia
176 The Bionic Ear Institute, 384–388 Albert Street, 3002, East Melbourne, VIC, Australia
177 rdf:type schema:Organization
178 grid-institutes:grid.6936.a schema:alternateName Physik Department, TU München, 85747, Garching bei München, Germany
179 schema:name Physik Department, TU München, 85747, Garching bei München, Germany
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...