Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

Yasuo Kuniyoshi, Shinji Sangawa

ABSTRACT

Early human motor development has the nature of spontaneous exploration and boot-strap learning, leading to open-ended acquisition of versatile flexible motor skills. Since dexterous motor skills often exploit body-environment dynamics, we formulate the developmental principle as the spontaneous exploration of consistent dynamical patterns of the neural-body-environment system. We propose that partially ordered dynamical patterns emergent from chaotic oscillators coupled through embodiment serve as the core driving mechanism of such exploration. A model of neuro-musculo-skeletal system is constructed capturing essential features of biological systems. It consists of a skeleton, muscles, spindles, tendon organs, spinal circuits, medullar circuits (CPGs), and a basic cortical model. Through a series of experiments with a minimally simple body model, it is shown that the model has the capability of generating partially ordered behavior, a mixture of chaotic exploration and ordered entrained patterns. Models of self-organizing cortical areas for primary somatosensory and motor areas are introduced. They participate in the explorative learning by simultaneously learning and controlling the movement patterns. A scaled up version of the model, a human infant model, is constructed and put through preliminary experiments. Some meaningful motor behavior emerged including rolling over and crawling-like motion. The results show the possibility that a rich variety of meaningful behavior can be discovered and acquired by the neural-body dynamics without pre-defined coordinated control circuits. More... »

PAGES

589

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-006-0127-z

DOI

http://dx.doi.org/10.1007/s00422-006-0127-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042722897

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17123097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Movement and Sports Science", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Joints", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motor Activity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Musculoskeletal Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Musculoskeletal System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "ERATO Asada Synergestic Intelligence Project, The University of Tokyo, Tokyo, Japan", 
            "Department of Mechano-Informatics, School of Information Science and Technology, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "id": "sg:person.013372311431.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.410792.9", 
          "name": [
            "Department of Mechano-Informatics, School of Information Science and Technology, The University of Tokyo, Tokyo, Japan", 
            "Intellectual Property Division, Sony Co., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangawa", 
        "givenName": "Shinji", 
        "id": "sg:person.07500376451.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07500376451.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0959-4388(99)80011-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000338619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(90)90373-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006212111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(89)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008047264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.1432692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008866795", 
          "https://doi.org/10.1114/1.1432692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90119-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90119-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836499000900206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010188980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/027836499000900206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010188980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855301317198179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012063680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(89)90094-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012078747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2647(00)00128-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014676754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1938.0050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016448432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(89)90071-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017768850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(94)90003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022099289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1983.sp014556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024399501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-3806(88)90242-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-3806(88)90242-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026463223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027159077", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56861-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027159077", 
          "https://doi.org/10.1007/978-3-642-56861-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56861-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027159077", 
          "https://doi.org/10.1007/978-3-642-56861-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46084-5_126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027839139", 
          "https://doi.org/10.1007/3-540-46084-5_126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46084-5_126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027839139", 
          "https://doi.org/10.1007/3-540-46084-5_126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220000211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028605759", 
          "https://doi.org/10.1007/s004220000211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033845423", 
          "https://doi.org/10.1114/1.93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(94)90283-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034142522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(94)90283-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034142522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02604027.1991.9972257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(94)90301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035912831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(94)90301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035912831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8890(01)00113-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036433825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ne.14.030191.001125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038596840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/drev.1998.0452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039438197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042285287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01010923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045378595", 
          "https://doi.org/10.1007/bf01010923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045682388", 
          "https://doi.org/10.1007/bf00198915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045682388", 
          "https://doi.org/10.1007/bf00198915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220050375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047662188", 
          "https://doi.org/10.1007/s004220050375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mus.10384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/4-431-31381-8_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048493503", 
          "https://doi.org/10.1007/4-431-31381-8_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhh043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049791877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0371-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050114405", 
          "https://doi.org/10.1007/s00422-002-0371-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2005.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051532366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2005.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051532366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0035-1557162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057342287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.939944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3291116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127400000049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021984360400023x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063006980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.22.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063096108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.72.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.28.1.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-003-0409-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075308518", 
          "https://doi.org/10.1007/s00422-003-0409-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080379622", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1999.86.1.359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083374075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1999.815633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093764356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2004.1389698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094614930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1993.292261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094716316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "Early human motor development has the nature of spontaneous exploration and boot-strap learning, leading to open-ended acquisition of versatile flexible motor skills. Since dexterous motor skills often exploit body-environment dynamics, we formulate the developmental principle as the spontaneous exploration of consistent dynamical patterns of the neural-body-environment system. We propose that partially ordered dynamical patterns emergent from chaotic oscillators coupled through embodiment serve as the core driving mechanism of such exploration. A model of neuro-musculo-skeletal system is constructed capturing essential features of biological systems. It consists of a skeleton, muscles, spindles, tendon organs, spinal circuits, medullar circuits (CPGs), and a basic cortical model. Through a series of experiments with a minimally simple body model, it is shown that the model has the capability of generating partially ordered behavior, a mixture of chaotic exploration and ordered entrained patterns. Models of self-organizing cortical areas for primary somatosensory and motor areas are introduced. They participate in the explorative learning by simultaneously learning and controlling the movement patterns. A scaled up version of the model, a human infant model, is constructed and put through preliminary experiments. Some meaningful motor behavior emerged including rolling over and crawling-like motion. The results show the possibility that a rich variety of meaningful behavior can be discovered and acquired by the neural-body dynamics without pre-defined coordinated control circuits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-006-0127-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model", 
    "pagination": "589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb81bc3be1eea86cd1557262956a1e4c636cc242978ac9d10f4b0abb665a227a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17123097"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-006-0127-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042722897"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-006-0127-z", 
      "https://app.dimensions.ai/details/publication/pub.1042722897"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13102_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-006-0127-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0127-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0127-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0127-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0127-z'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      91 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-006-0127-z schema:about N15504f7bff214748a0ffaa01ed084779
2 N1d7e9f22665b4a53948c836c2ed53b15
3 N32e59d940f884c8db5e7abb118dc3d2c
4 N468806b12c3f40df8405ac5ed0e422c4
5 N6269b0ec23f9422e8a2b7043610b4b02
6 N7f3621a1e0714ce7994a2da18628e334
7 N8f7762f2f34e4504a8ce9d35c70c0403
8 N9d17190838f747048a2c8e15085044a0
9 Naa986af448d24d6a9060fc0caef8e332
10 Nc0dd878278494dd99dd77e100321ca7a
11 Nc489fc8f39d74badbdc507c64febb403
12 anzsrc-for:11
13 anzsrc-for:1106
14 schema:author N7916ba4d4f884b1e9f34eb3e1eec5245
15 schema:citation sg:pub.10.1007/3-540-46084-5_126
16 sg:pub.10.1007/4-431-31381-8_13
17 sg:pub.10.1007/978-3-642-56861-9
18 sg:pub.10.1007/978-3-642-97966-8
19 sg:pub.10.1007/bf00198915
20 sg:pub.10.1007/bf01010923
21 sg:pub.10.1007/s00422-002-0371-9
22 sg:pub.10.1007/s00422-003-0409-7
23 sg:pub.10.1007/s004220000211
24 sg:pub.10.1007/s004220050375
25 sg:pub.10.1114/1.1432692
26 sg:pub.10.1114/1.93
27 https://app.dimensions.ai/details/publication/pub.1027159077
28 https://app.dimensions.ai/details/publication/pub.1080379622
29 https://doi.org/10.1002/mus.10384
30 https://doi.org/10.1006/drev.1998.0452
31 https://doi.org/10.1016/0021-9290(89)90045-6
32 https://doi.org/10.1016/0021-9290(89)90071-7
33 https://doi.org/10.1016/0021-9290(89)90094-8
34 https://doi.org/10.1016/0021-9290(90)90373-b
35 https://doi.org/10.1016/0021-9290(94)90003-5
36 https://doi.org/10.1016/0165-3806(88)90242-8
37 https://doi.org/10.1016/0167-2789(90)90119-a
38 https://doi.org/10.1016/0167-2789(94)90283-6
39 https://doi.org/10.1016/0167-2789(94)90301-8
40 https://doi.org/10.1016/j.ijnonlinmec.2005.09.001
41 https://doi.org/10.1016/j.robot.2004.07.004
42 https://doi.org/10.1016/s0303-2647(00)00128-3
43 https://doi.org/10.1016/s0921-8890(01)00113-0
44 https://doi.org/10.1016/s0959-4388(99)80011-7
45 https://doi.org/10.1055/s-0035-1557162
46 https://doi.org/10.1080/02604027.1991.9972257
47 https://doi.org/10.1093/cercor/bhh043
48 https://doi.org/10.1098/rspb.1938.0050
49 https://doi.org/10.1103/physrevlett.63.219
50 https://doi.org/10.1103/physrevlett.64.1196
51 https://doi.org/10.1109/37.939944
52 https://doi.org/10.1109/icsmc.1999.815633
53 https://doi.org/10.1109/iros.2004.1389698
54 https://doi.org/10.1109/robot.1993.292261
55 https://doi.org/10.1113/jphysiol.1983.sp014556
56 https://doi.org/10.1126/science.3291116
57 https://doi.org/10.1142/s0218127400000049
58 https://doi.org/10.1142/s021984360400023x
59 https://doi.org/10.1143/jpsj.22.28
60 https://doi.org/10.1143/ptp.72.480
61 https://doi.org/10.1146/annurev.ne.14.030191.001125
62 https://doi.org/10.1152/jappl.1999.86.1.359
63 https://doi.org/10.1161/01.str.28.1.101
64 https://doi.org/10.1163/156855301317198179
65 https://doi.org/10.1177/027836499000900206
66 schema:datePublished 2006-12
67 schema:datePublishedReg 2006-12-01
68 schema:description Early human motor development has the nature of spontaneous exploration and boot-strap learning, leading to open-ended acquisition of versatile flexible motor skills. Since dexterous motor skills often exploit body-environment dynamics, we formulate the developmental principle as the spontaneous exploration of consistent dynamical patterns of the neural-body-environment system. We propose that partially ordered dynamical patterns emergent from chaotic oscillators coupled through embodiment serve as the core driving mechanism of such exploration. A model of neuro-musculo-skeletal system is constructed capturing essential features of biological systems. It consists of a skeleton, muscles, spindles, tendon organs, spinal circuits, medullar circuits (CPGs), and a basic cortical model. Through a series of experiments with a minimally simple body model, it is shown that the model has the capability of generating partially ordered behavior, a mixture of chaotic exploration and ordered entrained patterns. Models of self-organizing cortical areas for primary somatosensory and motor areas are introduced. They participate in the explorative learning by simultaneously learning and controlling the movement patterns. A scaled up version of the model, a human infant model, is constructed and put through preliminary experiments. Some meaningful motor behavior emerged including rolling over and crawling-like motion. The results show the possibility that a rich variety of meaningful behavior can be discovered and acquired by the neural-body dynamics without pre-defined coordinated control circuits.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree false
72 schema:isPartOf N8ea4ddf30d9841f19eaa9c2f3c085023
73 Ndb5860f6645d49f3b2e2d214b14a63a4
74 sg:journal.1081741
75 schema:name Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model
76 schema:pagination 589
77 schema:productId N121449b3963a494498483072ebd8918c
78 N7851410f242a4bc9b9c6b225d3d16d17
79 Nae832cdb8ca147848ef6ae56cf2cc96a
80 Nfdb39fe350734466afeaafdb715147ed
81 Nfe0838d541ed43d3af2de3d8bd650531
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042722897
83 https://doi.org/10.1007/s00422-006-0127-z
84 schema:sdDatePublished 2019-04-11T14:32
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nbbab0d258e53434f8fc5ea9b666257e3
87 schema:url http://link.springer.com/10.1007/s00422-006-0127-z
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N06a7f7ab49d04259abda748a8cb84a13 rdf:first sg:person.07500376451.16
92 rdf:rest rdf:nil
93 N121449b3963a494498483072ebd8918c schema:name dimensions_id
94 schema:value pub.1042722897
95 rdf:type schema:PropertyValue
96 N15504f7bff214748a0ffaa01ed084779 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 N1d7e9f22665b4a53948c836c2ed53b15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Nonlinear Dynamics
101 rdf:type schema:DefinedTerm
102 N32e59d940f884c8db5e7abb118dc3d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Nerve Net
104 rdf:type schema:DefinedTerm
105 N468806b12c3f40df8405ac5ed0e422c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Biological
107 rdf:type schema:DefinedTerm
108 N6269b0ec23f9422e8a2b7043610b4b02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Motor Activity
110 rdf:type schema:DefinedTerm
111 N7851410f242a4bc9b9c6b225d3d16d17 schema:name doi
112 schema:value 10.1007/s00422-006-0127-z
113 rdf:type schema:PropertyValue
114 N7916ba4d4f884b1e9f34eb3e1eec5245 rdf:first sg:person.013372311431.62
115 rdf:rest N06a7f7ab49d04259abda748a8cb84a13
116 N7f3621a1e0714ce7994a2da18628e334 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Behavior
118 rdf:type schema:DefinedTerm
119 N8ea4ddf30d9841f19eaa9c2f3c085023 schema:issueNumber 6
120 rdf:type schema:PublicationIssue
121 N8f7762f2f34e4504a8ce9d35c70c0403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Joints
123 rdf:type schema:DefinedTerm
124 N9d17190838f747048a2c8e15085044a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Musculoskeletal Physiological Phenomena
126 rdf:type schema:DefinedTerm
127 Naa986af448d24d6a9060fc0caef8e332 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Mathematics
129 rdf:type schema:DefinedTerm
130 Nae832cdb8ca147848ef6ae56cf2cc96a schema:name readcube_id
131 schema:value cb81bc3be1eea86cd1557262956a1e4c636cc242978ac9d10f4b0abb665a227a
132 rdf:type schema:PropertyValue
133 Nbbab0d258e53434f8fc5ea9b666257e3 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nc0dd878278494dd99dd77e100321ca7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Learning
137 rdf:type schema:DefinedTerm
138 Nc489fc8f39d74badbdc507c64febb403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Musculoskeletal System
140 rdf:type schema:DefinedTerm
141 Ndb5860f6645d49f3b2e2d214b14a63a4 schema:volumeNumber 95
142 rdf:type schema:PublicationVolume
143 Nfdb39fe350734466afeaafdb715147ed schema:name nlm_unique_id
144 schema:value 7502533
145 rdf:type schema:PropertyValue
146 Nfe0838d541ed43d3af2de3d8bd650531 schema:name pubmed_id
147 schema:value 17123097
148 rdf:type schema:PropertyValue
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
153 schema:name Human Movement and Sports Science
154 rdf:type schema:DefinedTerm
155 sg:journal.1081741 schema:issn 0340-1200
156 1432-0770
157 schema:name Biological Cybernetics
158 rdf:type schema:Periodical
159 sg:person.013372311431.62 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
160 schema:familyName Kuniyoshi
161 schema:givenName Yasuo
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62
163 rdf:type schema:Person
164 sg:person.07500376451.16 schema:affiliation https://www.grid.ac/institutes/grid.410792.9
165 schema:familyName Sangawa
166 schema:givenName Shinji
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07500376451.16
168 rdf:type schema:Person
169 sg:pub.10.1007/3-540-46084-5_126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027839139
170 https://doi.org/10.1007/3-540-46084-5_126
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/4-431-31381-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048493503
173 https://doi.org/10.1007/4-431-31381-8_13
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-3-642-56861-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027159077
176 https://doi.org/10.1007/978-3-642-56861-9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/978-3-642-97966-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409031
179 https://doi.org/10.1007/978-3-642-97966-8
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf00198915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045682388
182 https://doi.org/10.1007/bf00198915
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf01010923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045378595
185 https://doi.org/10.1007/bf01010923
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00422-002-0371-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050114405
188 https://doi.org/10.1007/s00422-002-0371-9
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00422-003-0409-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075308518
191 https://doi.org/10.1007/s00422-003-0409-7
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s004220000211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028605759
194 https://doi.org/10.1007/s004220000211
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s004220050375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047662188
197 https://doi.org/10.1007/s004220050375
198 rdf:type schema:CreativeWork
199 sg:pub.10.1114/1.1432692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008866795
200 https://doi.org/10.1114/1.1432692
201 rdf:type schema:CreativeWork
202 sg:pub.10.1114/1.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033845423
203 https://doi.org/10.1114/1.93
204 rdf:type schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1027159077 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1080379622 schema:CreativeWork
207 https://doi.org/10.1002/mus.10384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486488
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/drev.1998.0452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039438197
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/0021-9290(89)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008047264
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/0021-9290(89)90071-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017768850
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/0021-9290(89)90094-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012078747
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/0021-9290(90)90373-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1006212111
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/0021-9290(94)90003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099289
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0165-3806(88)90242-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026463223
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0167-2789(90)90119-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010037494
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0167-2789(94)90283-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142522
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/0167-2789(94)90301-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035912831
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.ijnonlinmec.2005.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051532366
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.robot.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042285287
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0303-2647(00)00128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014676754
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0921-8890(01)00113-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036433825
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0959-4388(99)80011-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000338619
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1055/s-0035-1557162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057342287
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1080/02604027.1991.9972257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613434
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/cercor/bhh043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049791877
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1098/rspb.1938.0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016448432
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevlett.63.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799665
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevlett.64.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800194
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1109/37.939944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163492
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/icsmc.1999.815633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093764356
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/iros.2004.1389698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094614930
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/robot.1993.292261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094716316
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1113/jphysiol.1983.sp014556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024399501
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1126/science.3291116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604906
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1142/s0218127400000049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953286
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1142/s021984360400023x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063006980
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1143/jpsj.22.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063096108
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1143/ptp.72.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139590
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1146/annurev.ne.14.030191.001125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038596840
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1152/jappl.1999.86.1.359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083374075
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1161/01.str.28.1.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342100
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1163/156855301317198179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012063680
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1177/027836499000900206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010188980
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
282 schema:name Department of Mechano-Informatics, School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
283 ERATO Asada Synergestic Intelligence Project, The University of Tokyo, Tokyo, Japan
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.410792.9 schema:alternateName Sony (Japan)
286 schema:name Department of Mechano-Informatics, School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
287 Intellectual Property Division, Sony Co., Tokyo, Japan
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...