Learning to Attend: Modeling the Shaping of Selectivity in Infero-temporal Cortex in a Categorization Task View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03-23

AUTHORS

Miruna Szabo, Martin Stetter, Gustavo Deco, Stefano Fusi, Paolo Del Giudice, Maurizio Mattia

ABSTRACT

Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318–320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions. More... »

PAGES

351-365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-006-0054-z

DOI

http://dx.doi.org/10.1007/s00422-006-0054-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006942624

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16555071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Visual", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Technical University of Munich, 85747, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany", 
            "Department of Computer Science, Technical University of Munich, 85747, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szabo", 
        "givenName": "Miruna", 
        "id": "sg:person.01242174026.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242174026.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stetter", 
        "givenName": "Martin", 
        "id": "sg:person.0632166546.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632166546.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Technology Computational Neuroscience, Universitat Pompeu Fabra, Passeig de Circumvallaci\u00f3 8, 08003, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), 08010, Barcelona, Spain", 
            "Department of Technology Computational Neuroscience, Universitat Pompeu Fabra, Passeig de Circumvallaci\u00f3 8, 08003, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deco", 
        "givenName": "Gustavo", 
        "id": "sg:person.0741536706.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Neuroinformatics, ETH / University Z\u00fcrich, 8057, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Institute of Neuroinformatics, ETH / University Z\u00fcrich, 8057, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Technologies and Health, Istituto Superiore di Sanit\u00e0, v.le Regina Elena 299, 00161, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416651.1", 
          "name": [
            "Department of Technologies and Health, Istituto Superiore di Sanit\u00e0, v.le Regina Elena 299, 00161, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giudice", 
        "givenName": "Paolo Del", 
        "id": "sg:person.015245671473.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015245671473.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Technologies and Health, Istituto Superiore di Sanit\u00e0, v.le Regina Elena 299, 00161, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416651.1", 
          "name": [
            "Department of Technologies and Health, Istituto Superiore di Sanit\u00e0, v.le Regina Elena 299, 00161, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattia", 
        "givenName": "Maurizio", 
        "id": "sg:person.0702303600.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702303600.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011204814320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013341710", 
          "https://doi.org/10.1023/a:1011204814320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415318a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022954489", 
          "https://doi.org/10.1038/415318a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0356-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040028046", 
          "https://doi.org/10.1007/s00422-002-0356-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-0430-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036049923", 
          "https://doi.org/10.1007/978-94-010-0430-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004260050051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007341348", 
          "https://doi.org/10.1007/s004260050051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006764587", 
          "https://doi.org/10.1038/44372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363345a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033564522", 
          "https://doi.org/10.1038/363345a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00992696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001381236", 
          "https://doi.org/10.1007/bf00992696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026028429257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030976021", 
          "https://doi.org/10.1023/a:1026028429257"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03-23", 
    "datePublishedReg": "2006-03-23", 
    "description": "Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318\u2013320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-006-0054-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "keywords": [
      "infero-temporal cortex", 
      "categorization task", 
      "ITC neurons", 
      "prefrontal cortex", 
      "task-relevant features", 
      "visual categorization task", 
      "higher cognitive functions", 
      "model of excitatory", 
      "perceptual representations", 
      "stimulus categories", 
      "Hebbian learning rule", 
      "cognitive function", 
      "rewarded trials", 
      "visual areas", 
      "PFC neurons", 
      "cortical areas", 
      "learning rule", 
      "stimuli", 
      "task", 
      "cortex", 
      "selective input", 
      "plastic synapses", 
      "selectivity modulation", 
      "strong connection", 
      "reward", 
      "relevant features", 
      "neurons", 
      "specific neurons", 
      "representation", 
      "validity", 
      "hypothesis", 
      "monkeys", 
      "categories", 
      "interaction", 
      "excitatory", 
      "experiments", 
      "trials", 
      "influence", 
      "synapses", 
      "features", 
      "recent experiments", 
      "connection", 
      "input", 
      "modulation", 
      "area", 
      "model", 
      "results", 
      "rules", 
      "shaping", 
      "function", 
      "experimental results", 
      "selectivity", 
      "feature selective inputs", 
      "category specific neurons", 
      "Shaping of Selectivity"
    ], 
    "name": "Learning to Attend: Modeling the Shaping of Selectivity in Infero-temporal Cortex in a Categorization Task", 
    "pagination": "351-365", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006942624"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-006-0054-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16555071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-006-0054-z", 
      "https://app.dimensions.ai/details/publication/pub.1006942624"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_415.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-006-0054-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0054-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0054-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0054-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-006-0054-z'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      22 PREDICATES      99 URIs      82 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-006-0054-z schema:about N023673bb071b4665aaf19ed19a6c91d5
2 N03bd58186a884b128c4913ecf944bfba
3 N12debb91742f4782bf1bc3f10275cbfa
4 N178be0d10ade4090ba856854e6498985
5 N254e6dff8d594a128de60ac2332d459a
6 N3914d055df8243d9835f152760ebe734
7 N438816c09884462cb748904a9274deee
8 N4393a45e0af244209c022d7402613c9a
9 N97bd70b2e1c44c5c8ba577f634dd49c8
10 anzsrc-for:17
11 anzsrc-for:1701
12 schema:author N2df18380e0584b6fb64eb0a36eea7837
13 schema:citation sg:pub.10.1007/978-94-010-0430-5
14 sg:pub.10.1007/bf00992696
15 sg:pub.10.1007/s00422-002-0356-8
16 sg:pub.10.1007/s004260050051
17 sg:pub.10.1023/a:1011204814320
18 sg:pub.10.1023/a:1026028429257
19 sg:pub.10.1038/363345a0
20 sg:pub.10.1038/415318a
21 sg:pub.10.1038/44372
22 schema:datePublished 2006-03-23
23 schema:datePublishedReg 2006-03-23
24 schema:description Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318–320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N517d281f97e943ed98bca45b67a110e3
29 Na56c67c2851647218b2210d8e04b2ad7
30 sg:journal.1081741
31 schema:keywords Hebbian learning rule
32 ITC neurons
33 PFC neurons
34 Shaping of Selectivity
35 area
36 categories
37 categorization task
38 category specific neurons
39 cognitive function
40 connection
41 cortex
42 cortical areas
43 excitatory
44 experimental results
45 experiments
46 feature selective inputs
47 features
48 function
49 higher cognitive functions
50 hypothesis
51 infero-temporal cortex
52 influence
53 input
54 interaction
55 learning rule
56 model
57 model of excitatory
58 modulation
59 monkeys
60 neurons
61 perceptual representations
62 plastic synapses
63 prefrontal cortex
64 recent experiments
65 relevant features
66 representation
67 results
68 reward
69 rewarded trials
70 rules
71 selective input
72 selectivity
73 selectivity modulation
74 shaping
75 specific neurons
76 stimuli
77 stimulus categories
78 strong connection
79 synapses
80 task
81 task-relevant features
82 trials
83 validity
84 visual areas
85 visual categorization task
86 schema:name Learning to Attend: Modeling the Shaping of Selectivity in Infero-temporal Cortex in a Categorization Task
87 schema:pagination 351-365
88 schema:productId N82cbfe60c2b34fd7ba82256a2eb1068d
89 Nc55ff5ca96b54e49bb960cec4e1d39d0
90 Neceb4b126a304f398eb0e5a366d38d40
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006942624
92 https://doi.org/10.1007/s00422-006-0054-z
93 schema:sdDatePublished 2022-01-01T18:16
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Na840165e5d97433b87cd7a6f7a055e28
96 schema:url https://doi.org/10.1007/s00422-006-0054-z
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N023673bb071b4665aaf19ed19a6c91d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Neuronal Plasticity
102 rdf:type schema:DefinedTerm
103 N03bd58186a884b128c4913ecf944bfba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Artificial Intelligence
105 rdf:type schema:DefinedTerm
106 N0fdd9a51ce094ac7a34edba56a6bc956 rdf:first sg:person.015245671473.71
107 rdf:rest N94af3f4ad5d946caad972a2695e5d76a
108 N12debb91742f4782bf1bc3f10275cbfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Learning
110 rdf:type schema:DefinedTerm
111 N178be0d10ade4090ba856854e6498985 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pattern Recognition, Visual
113 rdf:type schema:DefinedTerm
114 N254e6dff8d594a128de60ac2332d459a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 N2df18380e0584b6fb64eb0a36eea7837 rdf:first sg:person.01242174026.23
118 rdf:rest N72b51d85610947a78a02646de00ba2eb
119 N3914d055df8243d9835f152760ebe734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Neural Pathways
121 rdf:type schema:DefinedTerm
122 N438816c09884462cb748904a9274deee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Models, Neurological
124 rdf:type schema:DefinedTerm
125 N4393a45e0af244209c022d7402613c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Neurons
127 rdf:type schema:DefinedTerm
128 N517d281f97e943ed98bca45b67a110e3 schema:volumeNumber 94
129 rdf:type schema:PublicationVolume
130 N6950c4d0c7d3425784fad280ddd2c14f rdf:first sg:person.01326702501.50
131 rdf:rest N0fdd9a51ce094ac7a34edba56a6bc956
132 N72b51d85610947a78a02646de00ba2eb rdf:first sg:person.0632166546.28
133 rdf:rest Nf33d7fd561b14091b10d47747682a6d2
134 N82cbfe60c2b34fd7ba82256a2eb1068d schema:name dimensions_id
135 schema:value pub.1006942624
136 rdf:type schema:PropertyValue
137 N94af3f4ad5d946caad972a2695e5d76a rdf:first sg:person.0702303600.23
138 rdf:rest rdf:nil
139 N97bd70b2e1c44c5c8ba577f634dd49c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Cerebral Cortex
141 rdf:type schema:DefinedTerm
142 Na56c67c2851647218b2210d8e04b2ad7 schema:issueNumber 5
143 rdf:type schema:PublicationIssue
144 Na840165e5d97433b87cd7a6f7a055e28 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 Nc55ff5ca96b54e49bb960cec4e1d39d0 schema:name doi
147 schema:value 10.1007/s00422-006-0054-z
148 rdf:type schema:PropertyValue
149 Neceb4b126a304f398eb0e5a366d38d40 schema:name pubmed_id
150 schema:value 16555071
151 rdf:type schema:PropertyValue
152 Nf33d7fd561b14091b10d47747682a6d2 rdf:first sg:person.0741536706.20
153 rdf:rest N6950c4d0c7d3425784fad280ddd2c14f
154 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
155 schema:name Psychology and Cognitive Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
158 schema:name Psychology
159 rdf:type schema:DefinedTerm
160 sg:journal.1081741 schema:issn 0340-1200
161 1432-0770
162 schema:name Biological Cybernetics
163 schema:publisher Springer Nature
164 rdf:type schema:Periodical
165 sg:person.01242174026.23 schema:affiliation grid-institutes:grid.6936.a
166 schema:familyName Szabo
167 schema:givenName Miruna
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242174026.23
169 rdf:type schema:Person
170 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.7400.3
171 schema:familyName Fusi
172 schema:givenName Stefano
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
174 rdf:type schema:Person
175 sg:person.015245671473.71 schema:affiliation grid-institutes:grid.416651.1
176 schema:familyName Giudice
177 schema:givenName Paolo Del
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015245671473.71
179 rdf:type schema:Person
180 sg:person.0632166546.28 schema:affiliation grid-institutes:grid.5406.7
181 schema:familyName Stetter
182 schema:givenName Martin
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632166546.28
184 rdf:type schema:Person
185 sg:person.0702303600.23 schema:affiliation grid-institutes:grid.416651.1
186 schema:familyName Mattia
187 schema:givenName Maurizio
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702303600.23
189 rdf:type schema:Person
190 sg:person.0741536706.20 schema:affiliation grid-institutes:grid.5612.0
191 schema:familyName Deco
192 schema:givenName Gustavo
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741536706.20
194 rdf:type schema:Person
195 sg:pub.10.1007/978-94-010-0430-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036049923
196 https://doi.org/10.1007/978-94-010-0430-5
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf00992696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001381236
199 https://doi.org/10.1007/bf00992696
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00422-002-0356-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040028046
202 https://doi.org/10.1007/s00422-002-0356-8
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s004260050051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007341348
205 https://doi.org/10.1007/s004260050051
206 rdf:type schema:CreativeWork
207 sg:pub.10.1023/a:1011204814320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013341710
208 https://doi.org/10.1023/a:1011204814320
209 rdf:type schema:CreativeWork
210 sg:pub.10.1023/a:1026028429257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030976021
211 https://doi.org/10.1023/a:1026028429257
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/363345a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033564522
214 https://doi.org/10.1038/363345a0
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/415318a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022954489
217 https://doi.org/10.1038/415318a
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/44372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006764587
220 https://doi.org/10.1038/44372
221 rdf:type schema:CreativeWork
222 grid-institutes:grid.416651.1 schema:alternateName Department of Technologies and Health, Istituto Superiore di Sanità, v.le Regina Elena 299, 00161, Roma, Italy
223 schema:name Department of Technologies and Health, Istituto Superiore di Sanità, v.le Regina Elena 299, 00161, Roma, Italy
224 rdf:type schema:Organization
225 grid-institutes:grid.5406.7 schema:alternateName Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany
226 schema:name Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany
227 rdf:type schema:Organization
228 grid-institutes:grid.5612.0 schema:alternateName Department of Technology Computational Neuroscience, Universitat Pompeu Fabra, Passeig de Circumvallació 8, 08003, Barcelona, Spain
229 schema:name Department of Technology Computational Neuroscience, Universitat Pompeu Fabra, Passeig de Circumvallació 8, 08003, Barcelona, Spain
230 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
231 rdf:type schema:Organization
232 grid-institutes:grid.6936.a schema:alternateName Department of Computer Science, Technical University of Munich, 85747, Garching, Germany
233 schema:name Department of Computer Science, Technical University of Munich, 85747, Garching, Germany
234 Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739, Munich, Germany
235 rdf:type schema:Organization
236 grid-institutes:grid.7400.3 schema:alternateName Institute of Neuroinformatics, ETH / University Zürich, 8057, Zürich, Switzerland
237 schema:name Institute of Neuroinformatics, ETH / University Zürich, 8057, Zürich, Switzerland
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...