Apoptosis, neurogenesis, and information content in Hebbian networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01

AUTHORS

Christopher Crick, Willard Miranker

ABSTRACT

The functional significance of alternate forms of plasticity in the brain (such as apoptosis and neurogenesis) is not easily observable with biological methods. Employing Hebbian dynamics for synaptic weight development, a three-layer neural network model of the hippocampus is used to simulate nonsupervised (autonomous) learning in the context of apoptosis and neurogenesis. This learning is applied to the characters of a pair of related alphabets, first the Roman and then the Greek, resulting in a set of encodings endogenously developed by the network. The learning performance takes the form of a U-shaped curve, showing that apoptosis and neurogenesis favorably inform memory development. We also discover that networks that converge very quickly on the Roman alphabet take much longer to handle the Greek, while networks which converge over an extended timeframe can then adapt very quickly to the new language. We find that the effect becomes increasingly pronounced as the number of neurons in the dentate gyrus layer decreases, and identify a strong correlation between cases where the Roman alphabet is quickly learned and cases where a few neurons saturate many of their weights almost immediately, minimizing participation of other neurons. Cases where learning the Roman alphabet requires more time lead to larger numbers of neurons participating with a larger diversity in synaptic weights. We present an information-theoretic argument about why this implies a better, more flexible learning system and why it leads to faster subsequent correlated Greek alphabet learning, and propose that the reason that apoptosis and neurogenesis work is that they promote this effect. More... »

PAGES

9-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-005-0026-8

DOI

http://dx.doi.org/10.1007/s00422-005-0026-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014535066

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16372165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hippocampus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Language", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organogenesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crick", 
        "givenName": "Christopher", 
        "id": "sg:person.01104671151.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104671151.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miranker", 
        "givenName": "Willard", 
        "id": "sg:person.014065361563.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065361563.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.npp.1300358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018854204", 
          "https://doi.org/10.1038/sj.npp.1300358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.npp.1300358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018854204", 
          "https://doi.org/10.1038/sj.npp.1300358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9861(19990419)406:4<449::aid-cne3>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022542546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/6365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034782793", 
          "https://doi.org/10.1038/6365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/6365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034782793", 
          "https://doi.org/10.1038/6365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/3305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035614683", 
          "https://doi.org/10.1038/3305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/3305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035614683", 
          "https://doi.org/10.1038/3305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.081074998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3223(97)00489-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046285987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1084324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448095"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "The functional significance of alternate forms of plasticity in the brain (such as apoptosis and neurogenesis) is not easily observable with biological methods. Employing Hebbian dynamics for synaptic weight development, a three-layer neural network model of the hippocampus is used to simulate nonsupervised (autonomous) learning in the context of apoptosis and neurogenesis. This learning is applied to the characters of a pair of related alphabets, first the Roman and then the Greek, resulting in a set of encodings endogenously developed by the network. The learning performance takes the form of a U-shaped curve, showing that apoptosis and neurogenesis favorably inform memory development. We also discover that networks that converge very quickly on the Roman alphabet take much longer to handle the Greek, while networks which converge over an extended timeframe can then adapt very quickly to the new language. We find that the effect becomes increasingly pronounced as the number of neurons in the dentate gyrus layer decreases, and identify a strong correlation between cases where the Roman alphabet is quickly learned and cases where a few neurons saturate many of their weights almost immediately, minimizing participation of other neurons. Cases where learning the Roman alphabet requires more time lead to larger numbers of neurons participating with a larger diversity in synaptic weights. We present an information-theoretic argument about why this implies a better, more flexible learning system and why it leads to faster subsequent correlated Greek alphabet learning, and propose that the reason that apoptosis and neurogenesis work is that they promote this effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-005-0026-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Apoptosis, neurogenesis, and information content in Hebbian networks", 
    "pagination": "9-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "453e724db5f94e74740ff22dd929625bbd0882a3562979d9d9a94b8211768402"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16372165"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-005-0026-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014535066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-005-0026-8", 
      "https://app.dimensions.ai/details/publication/pub.1014535066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-005-0026-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-005-0026-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-005-0026-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-005-0026-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-005-0026-8'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      46 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-005-0026-8 schema:about N2303cdd6c5794a30a68fb65675e748cb
2 N268ed2b23866469ba1e509c39df6f1b8
3 N3a27b17b7c864040b15d9f5ea08fc074
4 N47e2c27b4e0b408eb716b72ca5fdd865
5 N6921c4e46a894c4395dde431a7a9870d
6 N732816fbe4b84618b5c514225ce08f32
7 N800c036ee72c41c7a44733f152d8b589
8 N81197e2a5f324a4780aa8b6eb5a7dc32
9 N926ff7d2651247ec976ba18eb9526c43
10 Nd25fcfe29c784430b22dc13d1ae94262
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author Nd62b4d5865bf4f27a230874725942c2b
14 schema:citation sg:pub.10.1038/3305
15 sg:pub.10.1038/6365
16 sg:pub.10.1038/sj.npp.1300358
17 https://doi.org/10.1002/(sici)1096-9861(19990419)406:4<449::aid-cne3>3.0.co;2-i
18 https://doi.org/10.1016/s0006-3223(97)00489-7
19 https://doi.org/10.1073/pnas.081074998
20 https://doi.org/10.1126/science.1084324
21 schema:datePublished 2006-01
22 schema:datePublishedReg 2006-01-01
23 schema:description The functional significance of alternate forms of plasticity in the brain (such as apoptosis and neurogenesis) is not easily observable with biological methods. Employing Hebbian dynamics for synaptic weight development, a three-layer neural network model of the hippocampus is used to simulate nonsupervised (autonomous) learning in the context of apoptosis and neurogenesis. This learning is applied to the characters of a pair of related alphabets, first the Roman and then the Greek, resulting in a set of encodings endogenously developed by the network. The learning performance takes the form of a U-shaped curve, showing that apoptosis and neurogenesis favorably inform memory development. We also discover that networks that converge very quickly on the Roman alphabet take much longer to handle the Greek, while networks which converge over an extended timeframe can then adapt very quickly to the new language. We find that the effect becomes increasingly pronounced as the number of neurons in the dentate gyrus layer decreases, and identify a strong correlation between cases where the Roman alphabet is quickly learned and cases where a few neurons saturate many of their weights almost immediately, minimizing participation of other neurons. Cases where learning the Roman alphabet requires more time lead to larger numbers of neurons participating with a larger diversity in synaptic weights. We present an information-theoretic argument about why this implies a better, more flexible learning system and why it leads to faster subsequent correlated Greek alphabet learning, and propose that the reason that apoptosis and neurogenesis work is that they promote this effect.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N4db847795b3e407294a8ab9791e572b6
28 Nadaabb15c98748b9867e392d0602a149
29 sg:journal.1081741
30 schema:name Apoptosis, neurogenesis, and information content in Hebbian networks
31 schema:pagination 9-19
32 schema:productId N085f2f0a4a2a46b8abe499ae94ed8211
33 N328c281800fc4690abccc4575be7164b
34 N439de51fa10b494c97823e42c473689a
35 N49ed78d3453d433693ab5f02766936e2
36 N6da5ea824ea24eafb72fc446152dc586
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014535066
38 https://doi.org/10.1007/s00422-005-0026-8
39 schema:sdDatePublished 2019-04-11T12:42
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Naf998be773f24e629220d44f41fb4b3a
42 schema:url http://link.springer.com/10.1007/s00422-005-0026-8
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N085f2f0a4a2a46b8abe499ae94ed8211 schema:name nlm_unique_id
47 schema:value 7502533
48 rdf:type schema:PropertyValue
49 N2303cdd6c5794a30a68fb65675e748cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Organogenesis
51 rdf:type schema:DefinedTerm
52 N268ed2b23866469ba1e509c39df6f1b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Learning
54 rdf:type schema:DefinedTerm
55 N328c281800fc4690abccc4575be7164b schema:name doi
56 schema:value 10.1007/s00422-005-0026-8
57 rdf:type schema:PropertyValue
58 N3a27b17b7c864040b15d9f5ea08fc074 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Models, Neurological
60 rdf:type schema:DefinedTerm
61 N3e06b5732763444e8420b549b176682c rdf:first sg:person.014065361563.46
62 rdf:rest rdf:nil
63 N439de51fa10b494c97823e42c473689a schema:name dimensions_id
64 schema:value pub.1014535066
65 rdf:type schema:PropertyValue
66 N47e2c27b4e0b408eb716b72ca5fdd865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Nerve Net
68 rdf:type schema:DefinedTerm
69 N49ed78d3453d433693ab5f02766936e2 schema:name readcube_id
70 schema:value 453e724db5f94e74740ff22dd929625bbd0882a3562979d9d9a94b8211768402
71 rdf:type schema:PropertyValue
72 N4db847795b3e407294a8ab9791e572b6 schema:volumeNumber 94
73 rdf:type schema:PublicationVolume
74 N6921c4e46a894c4395dde431a7a9870d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Humans
76 rdf:type schema:DefinedTerm
77 N6da5ea824ea24eafb72fc446152dc586 schema:name pubmed_id
78 schema:value 16372165
79 rdf:type schema:PropertyValue
80 N732816fbe4b84618b5c514225ce08f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Apoptosis
82 rdf:type schema:DefinedTerm
83 N800c036ee72c41c7a44733f152d8b589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Computer Simulation
85 rdf:type schema:DefinedTerm
86 N81197e2a5f324a4780aa8b6eb5a7dc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Hippocampus
88 rdf:type schema:DefinedTerm
89 N926ff7d2651247ec976ba18eb9526c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Neurons
91 rdf:type schema:DefinedTerm
92 Nadaabb15c98748b9867e392d0602a149 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Naf998be773f24e629220d44f41fb4b3a schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nd25fcfe29c784430b22dc13d1ae94262 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Language
98 rdf:type schema:DefinedTerm
99 Nd62b4d5865bf4f27a230874725942c2b rdf:first sg:person.01104671151.44
100 rdf:rest N3e06b5732763444e8420b549b176682c
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
105 schema:name Neurosciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1081741 schema:issn 0340-1200
108 1432-0770
109 schema:name Biological Cybernetics
110 rdf:type schema:Periodical
111 sg:person.01104671151.44 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
112 schema:familyName Crick
113 schema:givenName Christopher
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104671151.44
115 rdf:type schema:Person
116 sg:person.014065361563.46 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
117 schema:familyName Miranker
118 schema:givenName Willard
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065361563.46
120 rdf:type schema:Person
121 sg:pub.10.1038/3305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035614683
122 https://doi.org/10.1038/3305
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/6365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034782793
125 https://doi.org/10.1038/6365
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/sj.npp.1300358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018854204
128 https://doi.org/10.1038/sj.npp.1300358
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/(sici)1096-9861(19990419)406:4<449::aid-cne3>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1022542546
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0006-3223(97)00489-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046285987
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.081074998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989348
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.1084324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448095
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
139 schema:name Yale University, 06520, New Haven, CT, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...