2004-08
AUTHORSTakashi Nagano, Makoto Hirahara, Wakako Urushihara
ABSTRACTWe propose a general model for detection of both first-order motion and second-order motion. In this model an input stimulus is divided into a number of partially overlapping spatiotemporal local regions. Spatiotemporal frequency analysis is done for every local region using Gabor filters, then the input stimulus (original spatiotemporal signal) is replaced by the outputs of Gabor filters. Local motion is detected by applying Gabor motion detectors to each local spatiotemporal pattern depicted by each local feature value. Outputs of all the detectors are integrated to give the final output for global motion of the input stimulus. The model was simulated on a computer and was confirmed to correctly detect second-order motion as well as first-order motion. More... »
PAGES99-103
http://scigraph.springernature.com/pub.10.1007/s00422-004-0493-3
DOIhttp://dx.doi.org/10.1007/s00422-004-0493-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008023773
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/15351886
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computer Simulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Lighting",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Neurological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Motion Perception",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neurons",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Photic Stimulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Retina",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajinocho, 184-8584, Tokyo, Koganei, Japan"
],
"type": "Organization"
},
"familyName": "Nagano",
"givenName": "Takashi",
"id": "sg:person.01034442456.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajinocho, 184-8584, Tokyo, Koganei, Japan"
],
"type": "Organization"
},
"familyName": "Hirahara",
"givenName": "Makoto",
"id": "sg:person.014774362523.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774362523.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajinocho, 184-8584, Tokyo, Koganei, Japan"
],
"type": "Organization"
},
"familyName": "Urushihara",
"givenName": "Wakako",
"id": "sg:person.01322272734.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322272734.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0042-6989(96)00305-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009135906"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josaa.2.000284",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012515972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rstb.1996.0154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021816553"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1163/156856889x00077",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022154340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1163/156856889x00077",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022154340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0079-6123(03)14414-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028064934"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3169/itej1978.48.157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034201727"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0959-4388(99)80069-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035711760"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rspb.1990.0012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036947172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0042-6989(97)00092-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047875310"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0079-6123(01)34013-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051391840"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/cercor/bhg085",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052294060"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josaa.2.000322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065159991"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josaa.5.001986",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065165963"
],
"type": "CreativeWork"
}
],
"datePublished": "2004-08",
"datePublishedReg": "2004-08-01",
"description": "We propose a general model for detection of both first-order motion and second-order motion. In this model an input stimulus is divided into a number of partially overlapping spatiotemporal local regions. Spatiotemporal frequency analysis is done for every local region using Gabor filters, then the input stimulus (original spatiotemporal signal) is replaced by the outputs of Gabor filters. Local motion is detected by applying Gabor motion detectors to each local spatiotemporal pattern depicted by each local feature value. Outputs of all the detectors are integrated to give the final output for global motion of the input stimulus. The model was simulated on a computer and was confirmed to correctly detect second-order motion as well as first-order motion.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00422-004-0493-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1081741",
"issn": [
"0340-1200",
"1432-0770"
],
"name": "Biological Cybernetics",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "91"
}
],
"name": "A general model for visual motion detection",
"pagination": "99-103",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"263a0f165fb54b065c22ceebb69e9d07f4f5a81bcccd00f3a9dbe1b4e991b107"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"15351886"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"7502533"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00422-004-0493-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008023773"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00422-004-0493-3",
"https://app.dimensions.ai/details/publication/pub.1008023773"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000480.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s00422-004-0493-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-004-0493-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-004-0493-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-004-0493-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-004-0493-3'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
21 PREDICATES
51 URIs
30 LITERALS
18 BLANK NODES