Resonant spatiotemporal learning in large random recurrent networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

Emmanuel Daucé, Mathias Quoy, Bernard Doyon

ABSTRACT

N/A

PAGES

315-315

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-002-0364-8

DOI

http://dx.doi.org/10.1007/s00422-002-0364-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026775886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Movement and Perception (UMR6559), Faculty of Sport Science, University of the Mediterranean, 163, avenue de Luminy, CP 910, 13288 Marseille cedex 9, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dauc\u00e9", 
        "givenName": "Emmanuel", 
        "id": "sg:person.0644732057.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644732057.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information Processing and System Research Lab", 
          "id": "https://www.grid.ac/institutes/grid.463844.9", 
          "name": [
            "Neurocybernetics team, ETIS, UCP-ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quoy", 
        "givenName": "Mathias", 
        "id": "sg:person.010556353111.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 INSERM U455, Service de Neurologie-CHU Purpan, 31059 Toulouse cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doyon", 
        "givenName": "Bernard", 
        "id": "sg:person.01264237031.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264237031.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00422-002-0364-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Resonant spatiotemporal learning in large random recurrent networks", 
    "pagination": "315-315", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f8eb5cc438d91b9df85d1136ca173af0205f76813961bc7f81a9c63b67bbc71"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-002-0364-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026775886"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-002-0364-8", 
      "https://app.dimensions.ai/details/publication/pub.1026775886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-002-0364-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0364-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0364-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0364-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0364-8'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      18 PREDICATES      24 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-002-0364-8 schema:author N0cc2ff06ceac44fca79cc3601849b553
2 schema:datePublished 2002-10
3 schema:datePublishedReg 2002-10-01
4 schema:genre non_research_article
5 schema:inLanguage en
6 schema:isAccessibleForFree false
7 schema:isPartOf N12f9705f543a48b984ff25d958d5f533
8 N5312661b327a4dea853653b8edb38d69
9 sg:journal.1081741
10 schema:name Resonant spatiotemporal learning in large random recurrent networks
11 schema:pagination 315-315
12 schema:productId N0f40e00d26be4ab9a3a8efd929af8fd3
13 N720843517d4d4f6ea80db3f34c09e3f1
14 Nd8a01a1d20f944eca0a4080b98d639bb
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026775886
16 https://doi.org/10.1007/s00422-002-0364-8
17 schema:sdDatePublished 2019-04-11T01:54
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N7f057d0ebb75472aaaec9bfa1bb0075d
20 schema:url http://link.springer.com/10.1007/s00422-002-0364-8
21 sgo:license sg:explorer/license/
22 sgo:sdDataset articles
23 rdf:type schema:ScholarlyArticle
24 N0cc2ff06ceac44fca79cc3601849b553 rdf:first sg:person.0644732057.19
25 rdf:rest Nfab6cc5b57f64daf9cd9b82bf243ceb0
26 N0f40e00d26be4ab9a3a8efd929af8fd3 schema:name readcube_id
27 schema:value 7f8eb5cc438d91b9df85d1136ca173af0205f76813961bc7f81a9c63b67bbc71
28 rdf:type schema:PropertyValue
29 N12f9705f543a48b984ff25d958d5f533 schema:issueNumber 4
30 rdf:type schema:PublicationIssue
31 N43919d9e343b44008c726b5b31fce390 rdf:first sg:person.01264237031.67
32 rdf:rest rdf:nil
33 N5312661b327a4dea853653b8edb38d69 schema:volumeNumber 87
34 rdf:type schema:PublicationVolume
35 N720843517d4d4f6ea80db3f34c09e3f1 schema:name doi
36 schema:value 10.1007/s00422-002-0364-8
37 rdf:type schema:PropertyValue
38 N7f057d0ebb75472aaaec9bfa1bb0075d schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N9732d2e8b2e64768a273ff1fea055944 schema:name Unité INSERM U455, Service de Neurologie-CHU Purpan, 31059 Toulouse cedex, France, FR
41 rdf:type schema:Organization
42 Nd8a01a1d20f944eca0a4080b98d639bb schema:name dimensions_id
43 schema:value pub.1026775886
44 rdf:type schema:PropertyValue
45 Nfab6cc5b57f64daf9cd9b82bf243ceb0 rdf:first sg:person.010556353111.37
46 rdf:rest N43919d9e343b44008c726b5b31fce390
47 sg:journal.1081741 schema:issn 0340-1200
48 1432-0770
49 schema:name Biological Cybernetics
50 rdf:type schema:Periodical
51 sg:person.010556353111.37 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
52 schema:familyName Quoy
53 schema:givenName Mathias
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37
55 rdf:type schema:Person
56 sg:person.01264237031.67 schema:affiliation N9732d2e8b2e64768a273ff1fea055944
57 schema:familyName Doyon
58 schema:givenName Bernard
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264237031.67
60 rdf:type schema:Person
61 sg:person.0644732057.19 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
62 schema:familyName Daucé
63 schema:givenName Emmanuel
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644732057.19
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.463844.9 schema:alternateName Information Processing and System Research Lab
67 schema:name Neurocybernetics team, ETIS, UCP-ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise cedex, France, FR
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
70 schema:name Movement and Perception (UMR6559), Faculty of Sport Science, University of the Mediterranean, 163, avenue de Luminy, CP 910, 13288 Marseille cedex 9, France, FR
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...