Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

Stefano Fusi

ABSTRACT

. Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory. More... »

PAGES

459-470

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8

DOI

http://dx.doi.org/10.1007/s00422-002-0356-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040028046

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12461635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012 Bern, Switzerland, CH", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012 Bern, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "Abstract.\u2002Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00422-002-0356-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "keywords": [
      "synaptic plasticity", 
      "mean firing rate", 
      "postsynaptic activity", 
      "firing rate", 
      "spike rate", 
      "spike-driven synaptic plasticity", 
      "synaptic dynamics", 
      "stimuli", 
      "cortex", 
      "synapses", 
      "plasticity", 
      "presentation", 
      "rate", 
      "mechanism", 
      "pre", 
      "appropriate patterns", 
      "patterns", 
      "old stimuli", 
      "activity", 
      "slow learning", 
      "room", 
      "small fraction", 
      "general considerations", 
      "fraction", 
      "memory", 
      "limitations", 
      "connectivity", 
      "noisy fluctuations", 
      "consideration", 
      "formation", 
      "associative memory", 
      "quantitative framework", 
      "general quantitative framework", 
      "new ones", 
      "order", 
      "devices", 
      "one", 
      "process", 
      "stochastic mechanism", 
      "memorizing", 
      "learning", 
      "selection mechanism", 
      "network", 
      "properties", 
      "performance", 
      "fluctuations", 
      "reverberation", 
      "dynamics", 
      "framework", 
      "synaptic devices", 
      "stimulus-selective reverberations", 
      "memorizing of patterns", 
      "material (biological or electronic) synaptic devices", 
      "palimpsest property", 
      "spike-driven synaptic dynamics", 
      "Hebbian spike-driven synaptic plasticity"
    ], 
    "name": "Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates", 
    "pagination": "459-470", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040028046"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-002-0356-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12461635"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-002-0356-8", 
      "https://app.dimensions.ai/details/publication/pub.1040028046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_351.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00422-002-0356-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      97 URIs      85 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-002-0356-8 schema:about N3a5494a1f46f4ce59c6c33036a273357
2 N6c2b66ed977742cabada387d17f187b8
3 N7ce60860efff42eb8e049d36ceb381eb
4 N7e4a4d836cf2428688854b20ab186e3b
5 N80c3158f27a646208cd07b2d4348c976
6 N8d988f8a452d49e6b2be8d82c98607a7
7 N9b4e46d0a583449486476cfe5701c962
8 Na14bdf816ec149258b8ff4f7854f8f29
9 Nfbe5e522eff54f9d8ec3588d85cc5828
10 Nfff27559850d420a9f82e166b76ae385
11 anzsrc-for:02
12 anzsrc-for:0299
13 anzsrc-for:08
14 anzsrc-for:0801
15 anzsrc-for:17
16 anzsrc-for:1702
17 schema:author N7ae3bfafb2d44bb29f69b35fea3c8428
18 schema:datePublished 2002-12
19 schema:datePublishedReg 2002-12-01
20 schema:description Abstract. Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N0fa7588309884024a1669af4c91dc774
25 Na86df53aeebf44228d9bcd1708b5e8ee
26 sg:journal.1081741
27 schema:keywords Hebbian spike-driven synaptic plasticity
28 activity
29 appropriate patterns
30 associative memory
31 connectivity
32 consideration
33 cortex
34 devices
35 dynamics
36 firing rate
37 fluctuations
38 formation
39 fraction
40 framework
41 general considerations
42 general quantitative framework
43 learning
44 limitations
45 material (biological or electronic) synaptic devices
46 mean firing rate
47 mechanism
48 memorizing
49 memorizing of patterns
50 memory
51 network
52 new ones
53 noisy fluctuations
54 old stimuli
55 one
56 order
57 palimpsest property
58 patterns
59 performance
60 plasticity
61 postsynaptic activity
62 pre
63 presentation
64 process
65 properties
66 quantitative framework
67 rate
68 reverberation
69 room
70 selection mechanism
71 slow learning
72 small fraction
73 spike rate
74 spike-driven synaptic dynamics
75 spike-driven synaptic plasticity
76 stimuli
77 stimulus-selective reverberations
78 stochastic mechanism
79 synapses
80 synaptic devices
81 synaptic dynamics
82 synaptic plasticity
83 schema:name Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates
84 schema:pagination 459-470
85 schema:productId N399b8cd1ee4f4f4783ef516c4b50a208
86 N76b6b3278fb64177bdf1c83d086384e4
87 N8c77da87dc3f4b299e51faf379efb0f6
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040028046
89 https://doi.org/10.1007/s00422-002-0356-8
90 schema:sdDatePublished 2021-11-01T18:05
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N466f406e80f949e89e18ff6504198139
93 schema:url https://doi.org/10.1007/s00422-002-0356-8
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0fa7588309884024a1669af4c91dc774 schema:issueNumber 5
98 rdf:type schema:PublicationIssue
99 N399b8cd1ee4f4f4783ef516c4b50a208 schema:name doi
100 schema:value 10.1007/s00422-002-0356-8
101 rdf:type schema:PropertyValue
102 N3a5494a1f46f4ce59c6c33036a273357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Learning
104 rdf:type schema:DefinedTerm
105 N466f406e80f949e89e18ff6504198139 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N6c2b66ed977742cabada387d17f187b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Neuronal Plasticity
109 rdf:type schema:DefinedTerm
110 N76b6b3278fb64177bdf1c83d086384e4 schema:name dimensions_id
111 schema:value pub.1040028046
112 rdf:type schema:PropertyValue
113 N7ae3bfafb2d44bb29f69b35fea3c8428 rdf:first sg:person.01326702501.50
114 rdf:rest rdf:nil
115 N7ce60860efff42eb8e049d36ceb381eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Animals
117 rdf:type schema:DefinedTerm
118 N7e4a4d836cf2428688854b20ab186e3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Neurons
120 rdf:type schema:DefinedTerm
121 N80c3158f27a646208cd07b2d4348c976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Synapses
123 rdf:type schema:DefinedTerm
124 N8c77da87dc3f4b299e51faf379efb0f6 schema:name pubmed_id
125 schema:value 12461635
126 rdf:type schema:PropertyValue
127 N8d988f8a452d49e6b2be8d82c98607a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Time Factors
129 rdf:type schema:DefinedTerm
130 N9b4e46d0a583449486476cfe5701c962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Memory
132 rdf:type schema:DefinedTerm
133 Na14bdf816ec149258b8ff4f7854f8f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Mathematics
135 rdf:type schema:DefinedTerm
136 Na86df53aeebf44228d9bcd1708b5e8ee schema:volumeNumber 87
137 rdf:type schema:PublicationVolume
138 Nfbe5e522eff54f9d8ec3588d85cc5828 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Nerve Net
140 rdf:type schema:DefinedTerm
141 Nfff27559850d420a9f82e166b76ae385 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Action Potentials
143 rdf:type schema:DefinedTerm
144 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
148 schema:name Other Physical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
157 schema:name Psychology and Cognitive Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
160 schema:name Cognitive Sciences
161 rdf:type schema:DefinedTerm
162 sg:journal.1081741 schema:issn 0340-1200
163 1432-0770
164 schema:name Biological Cybernetics
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.5734.5
168 schema:familyName Fusi
169 schema:givenName Stefano
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
171 rdf:type schema:Person
172 grid-institutes:grid.5734.5 schema:alternateName Institute of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland, CH
173 schema:name Institute of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland, CH
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...