Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

Stefano Fusi

ABSTRACT

Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory. More... »

PAGES

459-470

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8

DOI

http://dx.doi.org/10.1007/s00422-002-0356-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040028046

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12461635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bern", 
          "id": "https://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Physiology, University of Bern, B\u00fchlplatz 5, 3012 Bern, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-002-0356-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates", 
    "pagination": "459-470", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "beaddb2942c6f29022d9336cafd303deaeb241c1878a565b27ac9846bc154d43"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12461635"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-002-0356-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040028046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-002-0356-8", 
      "https://app.dimensions.ai/details/publication/pub.1040028046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-002-0356-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0356-8'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-002-0356-8 schema:about N0eccbdfa35894ed9b0928e0a5e553e36
2 N12450ab181d34a8da2b2f5b817fc8367
3 N67ce0057965a49f7b0f577da05fe438f
4 N6b309928cf384fb48097de03382a3f57
5 N7454702cb62e4de0925b8d89479f0a69
6 Nb531102229a8480899c583fd73c997b4
7 Nc74ef251089d40f8ae2e03f52aa86935
8 Ndd37d10e5b5a4d059b8fb33dc3a03613
9 Nfa201507d79f45479e5e17cf2eb88108
10 Nfccc07132cd04950bec5e41750b0048f
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author N6b407a737cab4cc087121b1fd98d4147
14 schema:datePublished 2002-12
15 schema:datePublishedReg 2002-12-01
16 schema:description Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na44051d52b144e5fa6014109a9fd2f1a
21 Nd1013d5716bf44e7b70f22792583172a
22 sg:journal.1081741
23 schema:name Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates
24 schema:pagination 459-470
25 schema:productId N334a1f3d12434513af077974f2f45b1b
26 N45588c44866d42ad9a79443b2987b10c
27 N5616dedc7a3a4bba9f0d3bcd5bc1f8cc
28 N82c3154ce9b642bba5c0c15f554dd7bd
29 N8f470ea4a9a343e6aba982a87f4b636d
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040028046
31 https://doi.org/10.1007/s00422-002-0356-8
32 schema:sdDatePublished 2019-04-10T17:24
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N0582e1af72b945309adcc00cefe1d52a
35 schema:url http://link.springer.com/10.1007/s00422-002-0356-8
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0582e1af72b945309adcc00cefe1d52a schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N0eccbdfa35894ed9b0928e0a5e553e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
42 schema:name Memory
43 rdf:type schema:DefinedTerm
44 N12450ab181d34a8da2b2f5b817fc8367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
45 schema:name Learning
46 rdf:type schema:DefinedTerm
47 N334a1f3d12434513af077974f2f45b1b schema:name readcube_id
48 schema:value beaddb2942c6f29022d9336cafd303deaeb241c1878a565b27ac9846bc154d43
49 rdf:type schema:PropertyValue
50 N45588c44866d42ad9a79443b2987b10c schema:name dimensions_id
51 schema:value pub.1040028046
52 rdf:type schema:PropertyValue
53 N5616dedc7a3a4bba9f0d3bcd5bc1f8cc schema:name doi
54 schema:value 10.1007/s00422-002-0356-8
55 rdf:type schema:PropertyValue
56 N67ce0057965a49f7b0f577da05fe438f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Nerve Net
58 rdf:type schema:DefinedTerm
59 N6b309928cf384fb48097de03382a3f57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Neurons
61 rdf:type schema:DefinedTerm
62 N6b407a737cab4cc087121b1fd98d4147 rdf:first sg:person.01326702501.50
63 rdf:rest rdf:nil
64 N7454702cb62e4de0925b8d89479f0a69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Action Potentials
66 rdf:type schema:DefinedTerm
67 N82c3154ce9b642bba5c0c15f554dd7bd schema:name nlm_unique_id
68 schema:value 7502533
69 rdf:type schema:PropertyValue
70 N8f470ea4a9a343e6aba982a87f4b636d schema:name pubmed_id
71 schema:value 12461635
72 rdf:type schema:PropertyValue
73 Na44051d52b144e5fa6014109a9fd2f1a schema:volumeNumber 87
74 rdf:type schema:PublicationVolume
75 Nb531102229a8480899c583fd73c997b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Neuronal Plasticity
77 rdf:type schema:DefinedTerm
78 Nc74ef251089d40f8ae2e03f52aa86935 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Mathematics
80 rdf:type schema:DefinedTerm
81 Nd1013d5716bf44e7b70f22792583172a schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 Ndd37d10e5b5a4d059b8fb33dc3a03613 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Animals
85 rdf:type schema:DefinedTerm
86 Nfa201507d79f45479e5e17cf2eb88108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Synapses
88 rdf:type schema:DefinedTerm
89 Nfccc07132cd04950bec5e41750b0048f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Time Factors
91 rdf:type schema:DefinedTerm
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
96 schema:name Neurosciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1081741 schema:issn 0340-1200
99 1432-0770
100 schema:name Biological Cybernetics
101 rdf:type schema:Periodical
102 sg:person.01326702501.50 schema:affiliation https://www.grid.ac/institutes/grid.5734.5
103 schema:familyName Fusi
104 schema:givenName Stefano
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
106 rdf:type schema:Person
107 https://www.grid.ac/institutes/grid.5734.5 schema:alternateName University of Bern
108 schema:name Institute of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland, CH
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...