Resonant spatiotemporal learning in large random recurrent networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

Emmanuel Daucé, Mathias Quoy, Bernard Doyon

ABSTRACT

Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections. More... »

PAGES

185-198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00422-002-0315-4

DOI

http://dx.doi.org/10.1007/s00422-002-0315-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019555197

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12200614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conditioning (Psychology)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motor Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons, Afferent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perception", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychomotor Performance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recognition (Psychology)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Movement and Perception (UMR6559), Faculty of Sport Science, University of the Mediterranean, 163, avenue de Luminy, CP 910, 13288 Marseille cedex 9, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dauc\u00e9", 
        "givenName": "Emmanuel", 
        "id": "sg:person.0644732057.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644732057.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information Processing and System Research Lab", 
          "id": "https://www.grid.ac/institutes/grid.463844.9", 
          "name": [
            "Neurocybernetics team, ETIS, UCP-ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quoy", 
        "givenName": "Mathias", 
        "id": "sg:person.010556353111.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 INSERM U455, Service de Neurologie-CHU Purpan, 31059 Toulouse cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doyon", 
        "givenName": "Bernard", 
        "id": "sg:person.01264237031.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264237031.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00422-002-0315-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Resonant spatiotemporal learning in large random recurrent networks", 
    "pagination": "185-198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d2c79e9d421580ae126b86cf80d820816283efca39265f84c5a7f03cbc6ecc6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12200614"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00422-002-0315-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019555197"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00422-002-0315-4", 
      "https://app.dimensions.ai/details/publication/pub.1019555197"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00422-002-0315-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0315-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0315-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0315-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00422-002-0315-4'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00422-002-0315-4 schema:about N046f7f7c7dc44fe3a4737096bc5a4f6f
2 N160721e7f1374776b32edab3976bcbd9
3 N973ecef35bb346c48f909c4c194b9aaf
4 Ncfd595109ab24c8598767befd751a3de
5 Ne04b46acec494c0a888ce199ca3c9e0c
6 Nea0465b4e99742deb0dc89f8c0605527
7 Nfbfcffeff5bc433ea378da7162cb04da
8 Nfe7097e3b2d440dd8877cc4dc37ab9ba
9 Nfeae15553a6a4750a632fe4b3e5b7c05
10 Nff829f31c46c4eee87710036b3eed160
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Nf53ab56a630547bfa2d20d64a780425f
14 schema:datePublished 2002-09
15 schema:datePublishedReg 2002-09-01
16 schema:description Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N096b04c458b449a08b543ec491bebbe9
21 N7a25dd9422cc458694ec41d060453809
22 sg:journal.1081741
23 schema:name Resonant spatiotemporal learning in large random recurrent networks
24 schema:pagination 185-198
25 schema:productId Na10b4b7b7f3842a787a3efea0eb5eceb
26 Nc55b4d53f6e94c5797944d468d702694
27 Nd3349504f1684454b8191f6f6f5c862a
28 Neccc74c7d8864cd7a0283e917ee33172
29 Nfa4a20991f2842f48de3385014423368
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019555197
31 https://doi.org/10.1007/s00422-002-0315-4
32 schema:sdDatePublished 2019-04-11T01:00
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N1fd02550090b45e8b63ddc747cb64139
35 schema:url http://link.springer.com/10.1007/s00422-002-0315-4
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N046f7f7c7dc44fe3a4737096bc5a4f6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
40 schema:name Brain
41 rdf:type schema:DefinedTerm
42 N080defc61adc4418a6cb9062ee311d43 rdf:first sg:person.01264237031.67
43 rdf:rest rdf:nil
44 N096b04c458b449a08b543ec491bebbe9 schema:volumeNumber 87
45 rdf:type schema:PublicationVolume
46 N160721e7f1374776b32edab3976bcbd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Perception
48 rdf:type schema:DefinedTerm
49 N1fd02550090b45e8b63ddc747cb64139 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N5e24e7309b6f4f48b03900f9771f795b schema:name Unité INSERM U455, Service de Neurologie-CHU Purpan, 31059 Toulouse cedex, France, FR
52 rdf:type schema:Organization
53 N7a25dd9422cc458694ec41d060453809 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N973ecef35bb346c48f909c4c194b9aaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Neurons, Afferent
57 rdf:type schema:DefinedTerm
58 Na10b4b7b7f3842a787a3efea0eb5eceb schema:name nlm_unique_id
59 schema:value 7502533
60 rdf:type schema:PropertyValue
61 Na6b22c49f9e9452d81ca3f2152b6e2d4 rdf:first sg:person.010556353111.37
62 rdf:rest N080defc61adc4418a6cb9062ee311d43
63 Nc55b4d53f6e94c5797944d468d702694 schema:name pubmed_id
64 schema:value 12200614
65 rdf:type schema:PropertyValue
66 Ncfd595109ab24c8598767befd751a3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Robotics
68 rdf:type schema:DefinedTerm
69 Nd3349504f1684454b8191f6f6f5c862a schema:name dimensions_id
70 schema:value pub.1019555197
71 rdf:type schema:PropertyValue
72 Ne04b46acec494c0a888ce199ca3c9e0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Motor Neurons
74 rdf:type schema:DefinedTerm
75 Nea0465b4e99742deb0dc89f8c0605527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Psychomotor Performance
77 rdf:type schema:DefinedTerm
78 Neccc74c7d8864cd7a0283e917ee33172 schema:name doi
79 schema:value 10.1007/s00422-002-0315-4
80 rdf:type schema:PropertyValue
81 Nf53ab56a630547bfa2d20d64a780425f rdf:first sg:person.0644732057.19
82 rdf:rest Na6b22c49f9e9452d81ca3f2152b6e2d4
83 Nfa4a20991f2842f48de3385014423368 schema:name readcube_id
84 schema:value 5d2c79e9d421580ae126b86cf80d820816283efca39265f84c5a7f03cbc6ecc6
85 rdf:type schema:PropertyValue
86 Nfbfcffeff5bc433ea378da7162cb04da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Feedback, Physiological
88 rdf:type schema:DefinedTerm
89 Nfe7097e3b2d440dd8877cc4dc37ab9ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Recognition (Psychology)
91 rdf:type schema:DefinedTerm
92 Nfeae15553a6a4750a632fe4b3e5b7c05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Conditioning (Psychology)
94 rdf:type schema:DefinedTerm
95 Nff829f31c46c4eee87710036b3eed160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Neural Networks (Computer)
97 rdf:type schema:DefinedTerm
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1081741 schema:issn 0340-1200
105 1432-0770
106 schema:name Biological Cybernetics
107 rdf:type schema:Periodical
108 sg:person.010556353111.37 schema:affiliation https://www.grid.ac/institutes/grid.463844.9
109 schema:familyName Quoy
110 schema:givenName Mathias
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37
112 rdf:type schema:Person
113 sg:person.01264237031.67 schema:affiliation N5e24e7309b6f4f48b03900f9771f795b
114 schema:familyName Doyon
115 schema:givenName Bernard
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264237031.67
117 rdf:type schema:Person
118 sg:person.0644732057.19 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
119 schema:familyName Daucé
120 schema:givenName Emmanuel
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644732057.19
122 rdf:type schema:Person
123 https://www.grid.ac/institutes/grid.463844.9 schema:alternateName Information Processing and System Research Lab
124 schema:name Neurocybernetics team, ETIS, UCP-ENSEA, 6, avenue du Ponceau, 95014 Cergy-Pontoise cedex, France, FR
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
127 schema:name Movement and Perception (UMR6559), Faculty of Sport Science, University of the Mediterranean, 163, avenue de Luminy, CP 910, 13288 Marseille cedex 9, France, FR
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...