Evaluation of fat-free mass hydration in athletes and non-athletes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-04-01

AUTHORS

Hiroyuki Sagayama, Yosuke Yamada, Mamiko Ichikawa, Emi Kondo, Jun Yasukata, Yoko Tanabe, Yasuki Higaki, Hideyuki Takahashi

ABSTRACT

PurposeTo evaluate the hydration of fat-free mass (FFM) in athletes and non-athletes.MethodsWe analyzed the data of 128 healthy young adults (athletes: 61 men, 36 women; non-athletes: 19 men, 12 women) using the two-component (2C), 3C and 4C models. Under-water weighing or air-displacement plethysmography and deuterium dilution methods were used for estimating body density and total body water, respectively. The bone mineral content (BMC) was determined using whole-body scans by dual-energy X-ray absorptiometry.ResultsThere was no significant difference in FFM hydration between the athletes (men, 72.3 ± 1.3%; women, 71.8 ± 1.3%) and non-athletes (men, 72.1 ± 1.2%; women, 72.2% ± 1.0%) in the 3C model. The total mean FFM hydration (72.1% ± 1.3%) was similar to the corresponding value in the literature (~ 73%). The estimation error of the percentage fat by the 2C vs the 4C model was significantly and highly correlated with hydration (r = 0.96), BMC (r = − 0.70), and total body protein (r = − 0.86) in the 4C model FFM.ConclusionAlthough FFM hydration was similar in athletes and non-athletes, it would be underestimated or overestimated when the 2C model is used for evaluation, and the biological FFM hydration value deviates from the 73% value inter-individually. Despite that this inter-individual variation in FFM hydration is low in terms of between-individual standard deviation (1.3%), the BMC and total body protein differ greatly in athletes, and when it affects FFM hydration, it may also affect the percentage fat measurement in the 2C model. Thus, FFM hydration would not be affected by FFM, percent body fat, or the athletic status. More... »

PAGES

1179-1188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00421-020-04356-y

DOI

http://dx.doi.org/10.1007/s00421-020-04356-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1126056055

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32239309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Athletes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sagayama", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01340515471.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340515471.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Yosuke", 
        "id": "sg:person.0653403746.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653403746.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Sports Science and Medicine, Teikyo University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.264706.1", 
          "name": [
            "Institute of Sports Science and Medicine, Teikyo University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ichikawa", 
        "givenName": "Mamiko", 
        "id": "sg:person.01146177560.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146177560.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Institute of Sports Sciences, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419627.f", 
          "name": [
            "Japan Institute of Sports Sciences, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Emi", 
        "id": "sg:person.013404164241.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013404164241.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411497.e", 
          "name": [
            "Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasukata", 
        "givenName": "Jun", 
        "id": "sg:person.01307027046.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307027046.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanabe", 
        "givenName": "Yoko", 
        "id": "sg:person.01234276727.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234276727.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411497.e", 
          "name": [
            "Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higaki", 
        "givenName": "Yasuki", 
        "id": "sg:person.0646456164.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646456164.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Institute of Sports Sciences, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419627.f", 
          "name": [
            "Japan Institute of Sports Sciences, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Hideyuki", 
        "id": "sg:person.010054312604.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010054312604.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1880-6805-33-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022755364", 
          "https://doi.org/10.1186/1880-6805-33-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2017.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084127974", 
          "https://doi.org/10.1038/ejcn.2017.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-015-3175-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048211624", 
          "https://doi.org/10.1007/s00421-015-3175-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41430-019-0447-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117827560", 
          "https://doi.org/10.1038/s41430-019-0447-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11597140-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015599239", 
          "https://doi.org/10.2165/11597140-000000000-00000"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-04-01", 
    "datePublishedReg": "2020-04-01", 
    "description": "PurposeTo evaluate the hydration of fat-free mass (FFM) in athletes and non-athletes.MethodsWe analyzed the data of 128 healthy young adults (athletes: 61 men, 36 women; non-athletes: 19 men, 12 women) using the two-component (2C), 3C and 4C models. Under-water weighing or air-displacement plethysmography and deuterium dilution methods were used for estimating body density and total body water, respectively. The bone mineral content (BMC) was determined using whole-body scans by dual-energy X-ray absorptiometry.ResultsThere was no significant difference in FFM hydration between the athletes (men, 72.3\u2009\u00b1\u20091.3%; women, 71.8\u2009\u00b1\u20091.3%) and non-athletes (men, 72.1\u2009\u00b1\u20091.2%; women, 72.2%\u2009\u00b1\u20091.0%) in the 3C model. The total mean FFM hydration (72.1%\u2009\u00b1\u20091.3%) was similar to the corresponding value in the literature (~\u200973%). The estimation error of the percentage fat by the 2C vs the 4C model was significantly and highly correlated with hydration (r\u2009=\u20090.96), BMC (r\u2009=\u2009\u2212\u00a00.70), and total body protein (r\u2009=\u2009\u2212\u00a00.86) in the 4C model FFM.ConclusionAlthough FFM hydration was similar in athletes and non-athletes, it would be underestimated or overestimated when the 2C model is used for evaluation, and the biological FFM hydration value deviates from the 73% value inter-individually. Despite that this inter-individual variation in FFM hydration is low in terms of between-individual standard deviation (1.3%), the BMC and total body protein differ greatly in athletes, and when it affects FFM hydration, it may also affect the percentage fat measurement in the 2C model. Thus, FFM hydration would not be affected by FFM, percent body fat, or\u00a0the athletic status.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00421-020-04356-y", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6534576", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7544712", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9210550", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "keywords": [
      "bone mineral content", 
      "fat-free mass", 
      "total body protein", 
      "dual-energy X-ray absorptiometry", 
      "FFM hydration", 
      "whole-body scan", 
      "X-ray absorptiometry", 
      "percent body fat", 
      "healthy young adults", 
      "fat-free mass hydration", 
      "air displacement plethysmography", 
      "total body water", 
      "body protein", 
      "body fat", 
      "deuterium dilution method", 
      "inter-individual variation", 
      "young adults", 
      "significant differences", 
      "percentage fat", 
      "athletes", 
      "body water", 
      "fat measurements", 
      "athletic status", 
      "dilution method", 
      "water weighing", 
      "body density", 
      "fat", 
      "individual standard deviation", 
      "mineral content", 
      "ResultsThere", 
      "PurposeTo", 
      "plethysmography", 
      "absorptiometry", 
      "MethodsWe", 
      "adults", 
      "scans", 
      "protein", 
      "evaluation", 
      "status", 
      "corresponding values", 
      "differences", 
      "hydration values", 
      "standard deviation", 
      "weighing", 
      "hydration", 
      "mass", 
      "literature", 
      "data", 
      "values", 
      "model", 
      "inter", 
      "method", 
      "measurements", 
      "content", 
      "deviation", 
      "variation", 
      "terms", 
      "density", 
      "error", 
      "water", 
      "two-component", 
      "estimation error"
    ], 
    "name": "Evaluation of fat-free mass hydration in athletes and non-athletes", 
    "pagination": "1179-1188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1126056055"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00421-020-04356-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32239309"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00421-020-04356-y", 
      "https://app.dimensions.ai/details/publication/pub.1126056055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_866.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00421-020-04356-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-020-04356-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-020-04356-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-020-04356-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-020-04356-y'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      103 URIs      90 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00421-020-04356-y schema:about N08a99d8b89454f249212b130645ac8ff
2 N1b474cbf894c4fab9920d33522aa6549
3 N2af3852e0c2841f8ae00a7705495a1b5
4 N321848c5d9cd40c28b03694b8bb860fb
5 N47d9cb6dfaa446a788d4f6c83b43c4b9
6 N79b069814ca8456bb4c9124bcc602b82
7 N9005db7f1a2b49098c9e1cc9cf7d5c28
8 Na1908cfa27ec44ee979e111e8bbb6987
9 Nb5e12bb590114a108e11048082d10176
10 Ndb608f65e84846678b5a338d3039f44a
11 Ne319e19d126849bab4b3ef2bc17a6657
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N62dc5c3f8f9a46f08c5c1544655fdee8
15 schema:citation sg:pub.10.1007/s00421-015-3175-z
16 sg:pub.10.1038/ejcn.2017.27
17 sg:pub.10.1038/s41430-019-0447-4
18 sg:pub.10.1186/1880-6805-33-29
19 sg:pub.10.2165/11597140-000000000-00000
20 schema:datePublished 2020-04-01
21 schema:datePublishedReg 2020-04-01
22 schema:description PurposeTo evaluate the hydration of fat-free mass (FFM) in athletes and non-athletes.MethodsWe analyzed the data of 128 healthy young adults (athletes: 61 men, 36 women; non-athletes: 19 men, 12 women) using the two-component (2C), 3C and 4C models. Under-water weighing or air-displacement plethysmography and deuterium dilution methods were used for estimating body density and total body water, respectively. The bone mineral content (BMC) was determined using whole-body scans by dual-energy X-ray absorptiometry.ResultsThere was no significant difference in FFM hydration between the athletes (men, 72.3 ± 1.3%; women, 71.8 ± 1.3%) and non-athletes (men, 72.1 ± 1.2%; women, 72.2% ± 1.0%) in the 3C model. The total mean FFM hydration (72.1% ± 1.3%) was similar to the corresponding value in the literature (~ 73%). The estimation error of the percentage fat by the 2C vs the 4C model was significantly and highly correlated with hydration (r = 0.96), BMC (r = − 0.70), and total body protein (r = − 0.86) in the 4C model FFM.ConclusionAlthough FFM hydration was similar in athletes and non-athletes, it would be underestimated or overestimated when the 2C model is used for evaluation, and the biological FFM hydration value deviates from the 73% value inter-individually. Despite that this inter-individual variation in FFM hydration is low in terms of between-individual standard deviation (1.3%), the BMC and total body protein differ greatly in athletes, and when it affects FFM hydration, it may also affect the percentage fat measurement in the 2C model. Thus, FFM hydration would not be affected by FFM, percent body fat, or the athletic status.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N4590c52bfbe64954b40cfca7cc6454ef
26 Nfdbe33c74e514d6f93df381250fa326b
27 sg:journal.1319730
28 schema:keywords FFM hydration
29 MethodsWe
30 PurposeTo
31 ResultsThere
32 X-ray absorptiometry
33 absorptiometry
34 adults
35 air displacement plethysmography
36 athletes
37 athletic status
38 body density
39 body fat
40 body protein
41 body water
42 bone mineral content
43 content
44 corresponding values
45 data
46 density
47 deuterium dilution method
48 deviation
49 differences
50 dilution method
51 dual-energy X-ray absorptiometry
52 error
53 estimation error
54 evaluation
55 fat
56 fat measurements
57 fat-free mass
58 fat-free mass hydration
59 healthy young adults
60 hydration
61 hydration values
62 individual standard deviation
63 inter
64 inter-individual variation
65 literature
66 mass
67 measurements
68 method
69 mineral content
70 model
71 percent body fat
72 percentage fat
73 plethysmography
74 protein
75 scans
76 significant differences
77 standard deviation
78 status
79 terms
80 total body protein
81 total body water
82 two-component
83 values
84 variation
85 water
86 water weighing
87 weighing
88 whole-body scan
89 young adults
90 schema:name Evaluation of fat-free mass hydration in athletes and non-athletes
91 schema:pagination 1179-1188
92 schema:productId N5dd817a77ad7417594dcf98781f0a364
93 N80ee74f8c4cb4e369aa93a8320ebf117
94 Nead33a638fd149ebb1c4074891794ca2
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126056055
96 https://doi.org/10.1007/s00421-020-04356-y
97 schema:sdDatePublished 2022-12-01T06:41
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nde2c2fe26252410daabd65414920604d
100 schema:url https://doi.org/10.1007/s00421-020-04356-y
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N08a99d8b89454f249212b130645ac8ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Healthy Volunteers
106 rdf:type schema:DefinedTerm
107 N1b474cbf894c4fab9920d33522aa6549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Body Composition
109 rdf:type schema:DefinedTerm
110 N2af3852e0c2841f8ae00a7705495a1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N2ee657b0c4dd4c408bdafd58f5d5cf33 rdf:first sg:person.010054312604.28
114 rdf:rest rdf:nil
115 N321848c5d9cd40c28b03694b8bb860fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Adipose Tissue
117 rdf:type schema:DefinedTerm
118 N4590c52bfbe64954b40cfca7cc6454ef schema:issueNumber 5
119 rdf:type schema:PublicationIssue
120 N47d9cb6dfaa446a788d4f6c83b43c4b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Bone Density
122 rdf:type schema:DefinedTerm
123 N56f1bce1c00b46afbd378ef09fd62aaa rdf:first sg:person.01146177560.18
124 rdf:rest Nd952f75b1d8b41f18ee9688a6565c577
125 N5dd817a77ad7417594dcf98781f0a364 schema:name dimensions_id
126 schema:value pub.1126056055
127 rdf:type schema:PropertyValue
128 N62dc5c3f8f9a46f08c5c1544655fdee8 rdf:first sg:person.01340515471.00
129 rdf:rest Nff85b08bbb794376b576c2b1d3e35af1
130 N66c49a1c5fb6424aabef9f14fa28a153 rdf:first sg:person.0646456164.19
131 rdf:rest N2ee657b0c4dd4c408bdafd58f5d5cf33
132 N79b069814ca8456bb4c9124bcc602b82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Athletes
134 rdf:type schema:DefinedTerm
135 N80ee74f8c4cb4e369aa93a8320ebf117 schema:name doi
136 schema:value 10.1007/s00421-020-04356-y
137 rdf:type schema:PropertyValue
138 N9005db7f1a2b49098c9e1cc9cf7d5c28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 N9e3ff866c6ec4d828c293ff80778d972 rdf:first sg:person.01234276727.54
142 rdf:rest N66c49a1c5fb6424aabef9f14fa28a153
143 Na1908cfa27ec44ee979e111e8bbb6987 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Young Adult
145 rdf:type schema:DefinedTerm
146 Nb2ceff9d33e540368127f655f4c0b420 rdf:first sg:person.01307027046.40
147 rdf:rest N9e3ff866c6ec4d828c293ff80778d972
148 Nb5e12bb590114a108e11048082d10176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adult
150 rdf:type schema:DefinedTerm
151 Nd952f75b1d8b41f18ee9688a6565c577 rdf:first sg:person.013404164241.94
152 rdf:rest Nb2ceff9d33e540368127f655f4c0b420
153 Ndb608f65e84846678b5a338d3039f44a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Female
155 rdf:type schema:DefinedTerm
156 Nde2c2fe26252410daabd65414920604d schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 Ne319e19d126849bab4b3ef2bc17a6657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Body Water
160 rdf:type schema:DefinedTerm
161 Nead33a638fd149ebb1c4074891794ca2 schema:name pubmed_id
162 schema:value 32239309
163 rdf:type schema:PropertyValue
164 Nfdbe33c74e514d6f93df381250fa326b schema:volumeNumber 120
165 rdf:type schema:PublicationVolume
166 Nff85b08bbb794376b576c2b1d3e35af1 rdf:first sg:person.0653403746.52
167 rdf:rest N56f1bce1c00b46afbd378ef09fd62aaa
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
172 schema:name Clinical Sciences
173 rdf:type schema:DefinedTerm
174 sg:grant.6534576 http://pending.schema.org/fundedItem sg:pub.10.1007/s00421-020-04356-y
175 rdf:type schema:MonetaryGrant
176 sg:grant.7544712 http://pending.schema.org/fundedItem sg:pub.10.1007/s00421-020-04356-y
177 rdf:type schema:MonetaryGrant
178 sg:grant.9210550 http://pending.schema.org/fundedItem sg:pub.10.1007/s00421-020-04356-y
179 rdf:type schema:MonetaryGrant
180 sg:journal.1319730 schema:issn 1432-1025
181 1439-6319
182 schema:name European Journal of Applied Physiology
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.010054312604.28 schema:affiliation grid-institutes:grid.419627.f
186 schema:familyName Takahashi
187 schema:givenName Hideyuki
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010054312604.28
189 rdf:type schema:Person
190 sg:person.01146177560.18 schema:affiliation grid-institutes:grid.264706.1
191 schema:familyName Ichikawa
192 schema:givenName Mamiko
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146177560.18
194 rdf:type schema:Person
195 sg:person.01234276727.54 schema:affiliation grid-institutes:grid.20515.33
196 schema:familyName Tanabe
197 schema:givenName Yoko
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234276727.54
199 rdf:type schema:Person
200 sg:person.01307027046.40 schema:affiliation grid-institutes:grid.411497.e
201 schema:familyName Yasukata
202 schema:givenName Jun
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307027046.40
204 rdf:type schema:Person
205 sg:person.013404164241.94 schema:affiliation grid-institutes:grid.419627.f
206 schema:familyName Kondo
207 schema:givenName Emi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013404164241.94
209 rdf:type schema:Person
210 sg:person.01340515471.00 schema:affiliation grid-institutes:grid.20515.33
211 schema:familyName Sagayama
212 schema:givenName Hiroyuki
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340515471.00
214 rdf:type schema:Person
215 sg:person.0646456164.19 schema:affiliation grid-institutes:grid.411497.e
216 schema:familyName Higaki
217 schema:givenName Yasuki
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646456164.19
219 rdf:type schema:Person
220 sg:person.0653403746.52 schema:affiliation grid-institutes:grid.482562.f
221 schema:familyName Yamada
222 schema:givenName Yosuke
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653403746.52
224 rdf:type schema:Person
225 sg:pub.10.1007/s00421-015-3175-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048211624
226 https://doi.org/10.1007/s00421-015-3175-z
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ejcn.2017.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084127974
229 https://doi.org/10.1038/ejcn.2017.27
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/s41430-019-0447-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117827560
232 https://doi.org/10.1038/s41430-019-0447-4
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1880-6805-33-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022755364
235 https://doi.org/10.1186/1880-6805-33-29
236 rdf:type schema:CreativeWork
237 sg:pub.10.2165/11597140-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015599239
238 https://doi.org/10.2165/11597140-000000000-00000
239 rdf:type schema:CreativeWork
240 grid-institutes:grid.20515.33 schema:alternateName Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
241 schema:name Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
242 rdf:type schema:Organization
243 grid-institutes:grid.264706.1 schema:alternateName Institute of Sports Science and Medicine, Teikyo University, Tokyo, Japan
244 schema:name Institute of Sports Science and Medicine, Teikyo University, Tokyo, Japan
245 rdf:type schema:Organization
246 grid-institutes:grid.411497.e schema:alternateName Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
247 schema:name Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
248 rdf:type schema:Organization
249 grid-institutes:grid.419627.f schema:alternateName Japan Institute of Sports Sciences, Tokyo, Japan
250 schema:name Japan Institute of Sports Sciences, Tokyo, Japan
251 rdf:type schema:Organization
252 grid-institutes:grid.482562.f schema:alternateName National Institute of Health and Nutrition, Tokyo, Japan
253 schema:name National Institute of Health and Nutrition, Tokyo, Japan
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...