The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-01

AUTHORS

Ilkka Heinonen, Dirk J. Duncker, Juhani Knuuti, Kari K. Kalliokoski

ABSTRACT

The distribution of blood flow between active and inactive skeletal muscles has been sparsely studied in humans. Here we investigated non-exercising leg blood flow in six healthy young women during intermittent isometric one leg knee extension exercise with increasing workloads. Positron emission tomography was used to measure blood flow in hamstring muscles of the exercising leg, and whole thigh muscles as well as its knee extensor and hamstring compartment of the resting leg. Mean blood flow to the hamstrings of the exercising leg (5.8 ± 2.6 ml/100 g/min during the highest exercise workload) and whole thigh muscle of the resting leg (7.1 ± 3.8 ml/100 g/min) did not change significantly from rest (4.0 ± 0.7 and 4.7 ± 1.9 ml/100 g/min, respectively) to exercise, but flow heterogeneity increased substantially at increasing workloads. Importantly, during the highest exercise workload, mean blood flow in the knee extensors of the resting leg decreased (5.5 ± 3.0 ml/100 g/min at rest and 3.4 ± 2.0 ml/100 g/min during exercise, p < 0.01) while flow heterogeneity increased (28 ± 8% at rest and 83 ± 26% during exercise, p < 0.05). Conversely, in hamstring muscles of the resting leg blood flow increased from 3.9 ± 1.0 ml/100 g/min at rest to 11.5 ± 6.8 ml/100 g/min during exercise (p < 0.05) while flow heterogeneity increased from 30 ± 7 to 58 ± 19% (p < 0.05). In conclusion, while mean whole thigh muscle blood flow of the resting leg remains at resting level during one leg exercise of the contralateral leg, redistribution of blood flow between muscle parts occurs within the thigh. Based on previous studies, nervous constraints most probably act to cause this blood flow distribution. More... »

PAGES

3503-3509

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00421-012-2329-5

DOI

http://dx.doi.org/10.1007/s00421-012-2329-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009054106

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22302377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Movement and Sports Science", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knee Joint", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leg", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regional Blood Flow", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rest", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.410552.7", 
          "name": [
            "Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland", 
            "Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland", 
            "Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinonen", 
        "givenName": "Ilkka", 
        "id": "sg:person.01036617440.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036617440.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Holland", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Holland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duncker", 
        "givenName": "Dirk J.", 
        "id": "sg:person.0700720351.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700720351.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knuuti", 
        "givenName": "Juhani", 
        "id": "sg:person.01163336756.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalliokoski", 
        "givenName": "Kari K.", 
        "id": "sg:person.01210110752.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210110752.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00609407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016329670", 
          "https://doi.org/10.1007/bf00609407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01819139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029719531", 
          "https://doi.org/10.1007/bf01819139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004210000267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006146934", 
          "https://doi.org/10.1007/s004210000267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-01", 
    "datePublishedReg": "2012-02-01", 
    "description": "The distribution of blood flow between active and inactive skeletal muscles has been sparsely studied in humans. Here we investigated non-exercising leg blood flow in six healthy young women during intermittent isometric one leg knee extension exercise with increasing workloads. Positron emission tomography was used to measure blood flow in hamstring muscles of the exercising leg, and whole thigh muscles as well as its knee extensor and hamstring compartment of the resting leg. Mean blood flow to the hamstrings of the exercising leg (5.8\u00a0\u00b1\u00a02.6\u00a0ml/100\u00a0g/min during the highest exercise workload) and whole thigh muscle of the resting leg (7.1\u00a0\u00b1\u00a03.8\u00a0ml/100\u00a0g/min) did not change significantly from rest (4.0\u00a0\u00b1\u00a00.7 and 4.7\u00a0\u00b1\u00a01.9\u00a0ml/100\u00a0g/min, respectively) to exercise, but flow heterogeneity increased substantially at increasing workloads. Importantly, during the highest exercise workload, mean blood flow in the knee extensors of the resting leg decreased (5.5\u00a0\u00b1\u00a03.0\u00a0ml/100\u00a0g/min at rest and 3.4\u00a0\u00b1\u00a02.0\u00a0ml/100\u00a0g/min during exercise, p\u00a0<\u00a00.01) while flow heterogeneity increased (28\u00a0\u00b1\u00a08% at rest and 83\u00a0\u00b1\u00a026% during exercise, p\u00a0<\u00a00.05). Conversely, in hamstring muscles of the resting leg blood flow increased from 3.9\u00a0\u00b1\u00a01.0\u00a0ml/100\u00a0g/min at rest to 11.5\u00a0\u00b1\u00a06.8\u00a0ml/100\u00a0g/min during exercise (p\u00a0<\u00a00.05) while flow heterogeneity increased from 30\u00a0\u00b1\u00a07 to 58\u00a0\u00b1\u00a019% (p\u00a0<\u00a00.05). In conclusion, while mean whole thigh muscle blood flow of the resting leg remains at resting level during one leg exercise of the contralateral leg, redistribution of blood flow between muscle parts occurs within the thigh. Based on previous studies, nervous constraints most probably act to cause this blood flow distribution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00421-012-2329-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6815222", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8841162", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "leg blood flow", 
      "muscle blood flow", 
      "blood flow", 
      "knee extensors", 
      "thigh muscles", 
      "higher exercise workloads", 
      "healthy young women", 
      "inactive skeletal muscle", 
      "knee extension exercise", 
      "blood flow distribution", 
      "positron emission tomography", 
      "leg exercise", 
      "acute exercise", 
      "exercise workload", 
      "contralateral leg", 
      "extension exercise", 
      "emission tomography", 
      "muscle parts", 
      "young women", 
      "skeletal muscle", 
      "muscle", 
      "exercise", 
      "extensors", 
      "leg", 
      "ml/100", 
      "flow heterogeneity", 
      "previous studies", 
      "humans", 
      "hamstrings", 
      "min", 
      "thigh", 
      "women", 
      "rest", 
      "tomography", 
      "heterogeneity", 
      "conclusion", 
      "compartments", 
      "workload", 
      "levels", 
      "study", 
      "flow distribution", 
      "effect", 
      "flow", 
      "part", 
      "distribution", 
      "redistribution", 
      "constraints", 
      "non-exercising leg blood flow", 
      "leg knee extension exercise", 
      "whole thigh muscles", 
      "mean whole thigh muscle blood flow", 
      "whole thigh muscle blood flow", 
      "thigh muscle blood flow", 
      "nervous constraints", 
      "inactive muscle blood flow"
    ], 
    "name": "The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans", 
    "pagination": "3503-3509", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009054106"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00421-012-2329-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22302377"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00421-012-2329-5", 
      "https://app.dimensions.ai/details/publication/pub.1009054106"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_574.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00421-012-2329-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-012-2329-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-012-2329-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-012-2329-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-012-2329-5'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      95 URIs      84 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00421-012-2329-5 schema:about N0bbf859654564de488fd17a44275494d
2 N4c84a0381ac0410ab4094a8ff2e34eae
3 N4d79f03f596b4bb4874e101270bba619
4 N5b0546474a884bb49fa785baab54ca24
5 N6437ce4aad4d4b2f8b1eb2a04f95e067
6 N866c3b3bf077411394cd196f1547d7af
7 N8c807ccc1462498189d39ed2e30596a2
8 Na7f2fe4d2d29481c8dd530fdfb9568da
9 Nc23c3e778c9b4230b7544556b2728919
10 Nc6397b7abd654e52a38af0435d114f4e
11 Nd5844d3813aa43f2a3a92bc52e6b1a55
12 anzsrc-for:11
13 anzsrc-for:1106
14 schema:author N7e6e4cca2d2b468281cb5682955a786e
15 schema:citation sg:pub.10.1007/bf00609407
16 sg:pub.10.1007/bf01819139
17 sg:pub.10.1007/s004210000267
18 schema:datePublished 2012-02-01
19 schema:datePublishedReg 2012-02-01
20 schema:description The distribution of blood flow between active and inactive skeletal muscles has been sparsely studied in humans. Here we investigated non-exercising leg blood flow in six healthy young women during intermittent isometric one leg knee extension exercise with increasing workloads. Positron emission tomography was used to measure blood flow in hamstring muscles of the exercising leg, and whole thigh muscles as well as its knee extensor and hamstring compartment of the resting leg. Mean blood flow to the hamstrings of the exercising leg (5.8 ± 2.6 ml/100 g/min during the highest exercise workload) and whole thigh muscle of the resting leg (7.1 ± 3.8 ml/100 g/min) did not change significantly from rest (4.0 ± 0.7 and 4.7 ± 1.9 ml/100 g/min, respectively) to exercise, but flow heterogeneity increased substantially at increasing workloads. Importantly, during the highest exercise workload, mean blood flow in the knee extensors of the resting leg decreased (5.5 ± 3.0 ml/100 g/min at rest and 3.4 ± 2.0 ml/100 g/min during exercise, p < 0.01) while flow heterogeneity increased (28 ± 8% at rest and 83 ± 26% during exercise, p < 0.05). Conversely, in hamstring muscles of the resting leg blood flow increased from 3.9 ± 1.0 ml/100 g/min at rest to 11.5 ± 6.8 ml/100 g/min during exercise (p < 0.05) while flow heterogeneity increased from 30 ± 7 to 58 ± 19% (p < 0.05). In conclusion, while mean whole thigh muscle blood flow of the resting leg remains at resting level during one leg exercise of the contralateral leg, redistribution of blood flow between muscle parts occurs within the thigh. Based on previous studies, nervous constraints most probably act to cause this blood flow distribution.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N8aa74044d3914467af5a957043438fad
25 Nae00250fc72e44ab9646ae502f6b5163
26 sg:journal.1319730
27 schema:keywords acute exercise
28 blood flow
29 blood flow distribution
30 compartments
31 conclusion
32 constraints
33 contralateral leg
34 distribution
35 effect
36 emission tomography
37 exercise
38 exercise workload
39 extension exercise
40 extensors
41 flow
42 flow distribution
43 flow heterogeneity
44 hamstrings
45 healthy young women
46 heterogeneity
47 higher exercise workloads
48 humans
49 inactive muscle blood flow
50 inactive skeletal muscle
51 knee extension exercise
52 knee extensors
53 leg
54 leg blood flow
55 leg exercise
56 leg knee extension exercise
57 levels
58 mean whole thigh muscle blood flow
59 min
60 ml/100
61 muscle
62 muscle blood flow
63 muscle parts
64 nervous constraints
65 non-exercising leg blood flow
66 part
67 positron emission tomography
68 previous studies
69 redistribution
70 rest
71 skeletal muscle
72 study
73 thigh
74 thigh muscle blood flow
75 thigh muscles
76 tomography
77 whole thigh muscle blood flow
78 whole thigh muscles
79 women
80 workload
81 young women
82 schema:name The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans
83 schema:pagination 3503-3509
84 schema:productId N7367ac61261542f094a888dde71fc21d
85 Nab9ffb1c9adc48948a9d3e21d63dff23
86 Nd303a4f1552c4cde98b2132e4b1b5f2f
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009054106
88 https://doi.org/10.1007/s00421-012-2329-5
89 schema:sdDatePublished 2021-11-01T18:18
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nd2400d41fe8848798e44d4c0b49c9076
92 schema:url https://doi.org/10.1007/s00421-012-2329-5
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0bbf859654564de488fd17a44275494d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Knee Joint
98 rdf:type schema:DefinedTerm
99 N4c84a0381ac0410ab4094a8ff2e34eae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N4d79f03f596b4bb4874e101270bba619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Leg
104 rdf:type schema:DefinedTerm
105 N5b0546474a884bb49fa785baab54ca24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Female
107 rdf:type schema:DefinedTerm
108 N6437ce4aad4d4b2f8b1eb2a04f95e067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Magnetic Resonance Imaging
110 rdf:type schema:DefinedTerm
111 N7367ac61261542f094a888dde71fc21d schema:name dimensions_id
112 schema:value pub.1009054106
113 rdf:type schema:PropertyValue
114 N7e6e4cca2d2b468281cb5682955a786e rdf:first sg:person.01036617440.17
115 rdf:rest Ne2c503d7c28d4a7b93517fd306e2d468
116 N866c3b3bf077411394cd196f1547d7af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Rest
118 rdf:type schema:DefinedTerm
119 N8aa74044d3914467af5a957043438fad schema:volumeNumber 112
120 rdf:type schema:PublicationVolume
121 N8c807ccc1462498189d39ed2e30596a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Exercise
123 rdf:type schema:DefinedTerm
124 Na7f2fe4d2d29481c8dd530fdfb9568da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Positron-Emission Tomography
126 rdf:type schema:DefinedTerm
127 Nab9ffb1c9adc48948a9d3e21d63dff23 schema:name pubmed_id
128 schema:value 22302377
129 rdf:type schema:PropertyValue
130 Nae00250fc72e44ab9646ae502f6b5163 schema:issueNumber 10
131 rdf:type schema:PublicationIssue
132 Nb7c362d8c9d545aaa69c0e226913b9c4 rdf:first sg:person.01163336756.79
133 rdf:rest Nb851f8336e104a81bfd22661a836a1b8
134 Nb851f8336e104a81bfd22661a836a1b8 rdf:first sg:person.01210110752.34
135 rdf:rest rdf:nil
136 Nc23c3e778c9b4230b7544556b2728919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Muscle, Skeletal
138 rdf:type schema:DefinedTerm
139 Nc6397b7abd654e52a38af0435d114f4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Regional Blood Flow
141 rdf:type schema:DefinedTerm
142 Nd2400d41fe8848798e44d4c0b49c9076 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nd303a4f1552c4cde98b2132e4b1b5f2f schema:name doi
145 schema:value 10.1007/s00421-012-2329-5
146 rdf:type schema:PropertyValue
147 Nd5844d3813aa43f2a3a92bc52e6b1a55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Hemodynamics
149 rdf:type schema:DefinedTerm
150 Ne2c503d7c28d4a7b93517fd306e2d468 rdf:first sg:person.0700720351.93
151 rdf:rest Nb7c362d8c9d545aaa69c0e226913b9c4
152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
153 schema:name Medical and Health Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
156 schema:name Human Movement and Sports Science
157 rdf:type schema:DefinedTerm
158 sg:grant.6815222 http://pending.schema.org/fundedItem sg:pub.10.1007/s00421-012-2329-5
159 rdf:type schema:MonetaryGrant
160 sg:grant.8841162 http://pending.schema.org/fundedItem sg:pub.10.1007/s00421-012-2329-5
161 rdf:type schema:MonetaryGrant
162 sg:journal.1319730 schema:issn 1432-1025
163 1439-6319
164 schema:name European Journal of Applied Physiology
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01036617440.17 schema:affiliation grid-institutes:grid.410552.7
168 schema:familyName Heinonen
169 schema:givenName Ilkka
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036617440.17
171 rdf:type schema:Person
172 sg:person.01163336756.79 schema:affiliation grid-institutes:grid.470895.7
173 schema:familyName Knuuti
174 schema:givenName Juhani
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79
176 rdf:type schema:Person
177 sg:person.01210110752.34 schema:affiliation grid-institutes:grid.470895.7
178 schema:familyName Kalliokoski
179 schema:givenName Kari K.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210110752.34
181 rdf:type schema:Person
182 sg:person.0700720351.93 schema:affiliation grid-institutes:grid.5645.2
183 schema:familyName Duncker
184 schema:givenName Dirk J.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700720351.93
186 rdf:type schema:Person
187 sg:pub.10.1007/bf00609407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016329670
188 https://doi.org/10.1007/bf00609407
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/bf01819139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029719531
191 https://doi.org/10.1007/bf01819139
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s004210000267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146934
194 https://doi.org/10.1007/s004210000267
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.410552.7 schema:alternateName Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
197 schema:name Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
198 Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland
199 Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
200 rdf:type schema:Organization
201 grid-institutes:grid.470895.7 schema:alternateName Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
202 schema:name Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
203 rdf:type schema:Organization
204 grid-institutes:grid.5645.2 schema:alternateName Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Holland
205 schema:name Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Holland
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...