The development of physiological profiles and identification of training needs in NCAA female collegiate rowers using isoperformance curves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10-21

AUTHORS

David H. Fukuda, Kristina L. Kendall, Abbie E. Smith, Teddi R. Dwyer, Jeffrey R. Stout

ABSTRACT

The purpose of this study was to propose a systematic method for the identification of training strategies and team selection using isoperformance curves. Rowing is a sport that relies on both aerobic and anaerobic energy contributions during a standard 2,000 m competition. The critical velocity model combines both aerobic (critical velocity, CV) and anaerobic (anaerobic rowing capacity, ARC) parameters in a single two-dimensional graphic display. The concept of isoperformance curves, a series of linear equations corresponding to minimum performance standards, allows for an objective overview of a large group of athletes of varying talent. The purpose of this study was to develop physiological profiles from the CV test, and to evaluate results with isoperformance curves to identify training strategies for collegiate rowers. Thirty-five female collegiate rowers completed four time trials over various distances (400, 600, 800, and 1,000 m). CV and ARC were calculated and compared between novice and varsity athletes. CV values for the varsity group were significantly higher than the novice group (P = 0.016). No significant differences were found between groups for ARC (P = 0.068). Mean and individual CV and ARC values were plotted on the x- and y-axes, respectively, and junior, collegiate, and elite isoperformance curves were developed using 2,000 m times from recent indoor rowing competitions. Stratification of athletes through isoperformance curves was used to identify specific training interventions (anaerobic and/or aerobic) needed to improve their 2,000 m performance. The information drawn from isoperformance curves and the parameters of the CV test can be used to provide an objective view of physiological capabilities and training needs on both an individual and team basis. More... »

PAGES

679-685

References to SciGraph publications

  • 1999-01. A physiological description of critical velocity in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1990-10. Blood lactate in trained cyclists during cycle ergometry at critical power in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2010-04-28. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1993-01. Physiological and Biomechanical Aspects of Rowing in SPORTS MEDICINE
  • 2010-01-05. The effects of a pre-workout supplement containing caffeine, creatine, and amino acids during three weeks of high-intensity exercise on aerobic and anaerobic performance in JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION
  • 1997-02. Relationship of critical velocity to marathon running performance in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 2005-11-12. The critical power and related whole-body bioenergetic models in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1998-07. Elite endurance athletes and the ACE I allele – the role of genes in athletic performance in HUMAN GENETICS
  • 2001-05. The effect of mathematical modeling on critical velocity in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1994-01. Critical power may be determined from two tests in elite kayakers in EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
  • 1984-07. Applied Physiology of Rowing in SPORTS MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00421-010-1683-4

    DOI

    http://dx.doi.org/10.1007/s00421-010-1683-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019049161

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20963438


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Human Movement and Sports Science", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Athletes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Athletic Performance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Health Services Needs and Demand", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Learning Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Education and Training", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sports", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukuda", 
            "givenName": "David H.", 
            "id": "sg:person.01051727674.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051727674.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kendall", 
            "givenName": "Kristina L.", 
            "id": "sg:person.0775653365.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775653365.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Abbie E.", 
            "id": "sg:person.0751052435.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751052435.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dwyer", 
            "givenName": "Teddi R.", 
            "id": "sg:person.0623604057.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623604057.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stout", 
            "givenName": "Jeffrey R.", 
            "id": "sg:person.0713555725.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713555725.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00357613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008043408", 
              "https://doi.org/10.1007/bf00357613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1550-2783-7-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044150159", 
              "https://doi.org/10.1186/1550-2783-7-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00599239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015060201", 
              "https://doi.org/10.1007/bf00599239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004390050781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008884836", 
              "https://doi.org/10.1007/s004390050781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004210050509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005255942", 
              "https://doi.org/10.1007/s004210050509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004210050160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021235791", 
              "https://doi.org/10.1007/s004210050160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-010-1474-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004223654", 
              "https://doi.org/10.1007/s00421-010-1474-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004210000375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042190349", 
              "https://doi.org/10.1007/s004210000375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00007256-199315010-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011786476", 
              "https://doi.org/10.2165/00007256-199315010-00004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00421-005-0088-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045378246", 
              "https://doi.org/10.1007/s00421-005-0088-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00007256-198401040-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044234129", 
              "https://doi.org/10.2165/00007256-198401040-00005"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-10-21", 
        "datePublishedReg": "2010-10-21", 
        "description": "The purpose of this study was to propose a systematic method for the identification of training strategies and team selection using isoperformance curves. Rowing is a sport that relies on both aerobic and anaerobic energy contributions during a standard 2,000\u00a0m competition. The critical velocity model combines both aerobic (critical velocity, CV) and anaerobic (anaerobic rowing capacity, ARC) parameters in a single two-dimensional graphic display. The concept of isoperformance curves, a series of linear equations corresponding to minimum performance standards, allows for an objective overview of a large group of athletes of varying talent. The purpose of this study was to develop physiological profiles from the CV test, and to evaluate results with isoperformance curves to identify training strategies for collegiate rowers. Thirty-five female collegiate rowers completed four time trials over various distances (400, 600, 800, and 1,000\u00a0m). CV and ARC were calculated and compared between novice and varsity athletes. CV values for the varsity group were significantly higher than the novice group (P\u00a0=\u00a00.016). No significant differences were found between groups for ARC (P\u00a0=\u00a00.068). Mean and individual CV and ARC values were plotted on the x- and y-axes, respectively, and junior, collegiate, and elite isoperformance curves were developed using 2,000\u00a0m times from recent indoor rowing competitions. Stratification of athletes through isoperformance curves was used to identify specific training interventions (anaerobic and/or aerobic) needed to improve their 2,000\u00a0m performance. The information drawn from isoperformance curves and the parameters of the CV test can be used to provide an objective view of physiological capabilities and training needs on both an individual and team basis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00421-010-1683-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1319730", 
            "issn": [
              "1439-6319", 
              "1432-1025"
            ], 
            "name": "European Journal of Applied Physiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "111"
          }
        ], 
        "keywords": [
          "training strategy", 
          "isoperformance curves", 
          "team selection", 
          "collegiate rowers", 
          "female collegiate rowers", 
          "varsity athletes", 
          "specific training interventions", 
          "training intervention", 
          "training needs", 
          "team basis", 
          "anaerobic energy contribution", 
          "athletes", 
          "physiological profiles", 
          "time trial", 
          "novice group", 
          "significant differences", 
          "stratification of athletes", 
          "purpose", 
          "study", 
          "strategies", 
          "sports", 
          "anaerobic parameters", 
          "graphic display", 
          "display", 
          "performance standards", 
          "objective overview", 
          "large group", 
          "group", 
          "talent", 
          "profile", 
          "test", 
          "rowers", 
          "trials", 
          "novices", 
          "varsity group", 
          "individual CV", 
          "rowing competitions", 
          "stratification", 
          "intervention", 
          "objective view", 
          "physiological capabilities", 
          "need", 
          "systematic method", 
          "identification", 
          "selection", 
          "curves", 
          "rowing", 
          "contribution", 
          "competition", 
          "model", 
          "concept", 
          "series", 
          "minimum performance standards", 
          "standards", 
          "overview", 
          "results", 
          "cv", 
          "CV values", 
          "values", 
          "differences", 
          "arc values", 
          "time", 
          "performance", 
          "information", 
          "view", 
          "basis", 
          "development", 
          "method", 
          "parameters", 
          "CV test", 
          "distance", 
          "arc", 
          "y axes", 
          "capability", 
          "energy contribution", 
          "critical velocity model", 
          "velocity model", 
          "two-dimensional graphic displays", 
          "linear equations", 
          "equations"
        ], 
        "name": "The development of physiological profiles and identification of training needs in NCAA female collegiate rowers using isoperformance curves", 
        "pagination": "679-685", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019049161"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00421-010-1683-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20963438"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00421-010-1683-4", 
          "https://app.dimensions.ai/details/publication/pub.1019049161"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_510.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00421-010-1683-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-010-1683-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-010-1683-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-010-1683-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-010-1683-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      127 URIs      108 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00421-010-1683-4 schema:about N02d13289536e4979bc97ab021dd5d500
    2 N17177d3c85ba4cdcbe8532859bcc17a8
    3 N27caf36a29a9422e9803fdc717725021
    4 N31c03ff0a8e14127be23baec10f9db3b
    5 N33010fd0c20a4c9a927f92e89d6cb242
    6 N4657462750e74efeab3012d038ddea88
    7 N62f275b2e3b349d7afc1c0b2807ea1d3
    8 N6494ce7eb3a54bb69d4bff46ac43608e
    9 N681bbe63c45643ccaacfd748a95710da
    10 N917b46dc5c4642af83f14b88993f0bec
    11 Ndd6a1104399048bb9fa7e4b7e5270afd
    12 anzsrc-for:11
    13 anzsrc-for:1106
    14 schema:author N47aae2dcb395419cb3d45bf0607c0125
    15 schema:citation sg:pub.10.1007/bf00357613
    16 sg:pub.10.1007/bf00599239
    17 sg:pub.10.1007/s00421-005-0088-2
    18 sg:pub.10.1007/s00421-010-1474-y
    19 sg:pub.10.1007/s004210000375
    20 sg:pub.10.1007/s004210050160
    21 sg:pub.10.1007/s004210050509
    22 sg:pub.10.1007/s004390050781
    23 sg:pub.10.1186/1550-2783-7-10
    24 sg:pub.10.2165/00007256-198401040-00005
    25 sg:pub.10.2165/00007256-199315010-00004
    26 schema:datePublished 2010-10-21
    27 schema:datePublishedReg 2010-10-21
    28 schema:description The purpose of this study was to propose a systematic method for the identification of training strategies and team selection using isoperformance curves. Rowing is a sport that relies on both aerobic and anaerobic energy contributions during a standard 2,000 m competition. The critical velocity model combines both aerobic (critical velocity, CV) and anaerobic (anaerobic rowing capacity, ARC) parameters in a single two-dimensional graphic display. The concept of isoperformance curves, a series of linear equations corresponding to minimum performance standards, allows for an objective overview of a large group of athletes of varying talent. The purpose of this study was to develop physiological profiles from the CV test, and to evaluate results with isoperformance curves to identify training strategies for collegiate rowers. Thirty-five female collegiate rowers completed four time trials over various distances (400, 600, 800, and 1,000 m). CV and ARC were calculated and compared between novice and varsity athletes. CV values for the varsity group were significantly higher than the novice group (P = 0.016). No significant differences were found between groups for ARC (P = 0.068). Mean and individual CV and ARC values were plotted on the x- and y-axes, respectively, and junior, collegiate, and elite isoperformance curves were developed using 2,000 m times from recent indoor rowing competitions. Stratification of athletes through isoperformance curves was used to identify specific training interventions (anaerobic and/or aerobic) needed to improve their 2,000 m performance. The information drawn from isoperformance curves and the parameters of the CV test can be used to provide an objective view of physiological capabilities and training needs on both an individual and team basis.
    29 schema:genre article
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N41e1723d881e4df1b4bc64b51d357d34
    32 N6b97e974bc4f4b11be5122bd18522853
    33 sg:journal.1319730
    34 schema:keywords CV test
    35 CV values
    36 anaerobic energy contribution
    37 anaerobic parameters
    38 arc
    39 arc values
    40 athletes
    41 basis
    42 capability
    43 collegiate rowers
    44 competition
    45 concept
    46 contribution
    47 critical velocity model
    48 curves
    49 cv
    50 development
    51 differences
    52 display
    53 distance
    54 energy contribution
    55 equations
    56 female collegiate rowers
    57 graphic display
    58 group
    59 identification
    60 individual CV
    61 information
    62 intervention
    63 isoperformance curves
    64 large group
    65 linear equations
    66 method
    67 minimum performance standards
    68 model
    69 need
    70 novice group
    71 novices
    72 objective overview
    73 objective view
    74 overview
    75 parameters
    76 performance
    77 performance standards
    78 physiological capabilities
    79 physiological profiles
    80 profile
    81 purpose
    82 results
    83 rowers
    84 rowing
    85 rowing competitions
    86 selection
    87 series
    88 significant differences
    89 specific training interventions
    90 sports
    91 standards
    92 strategies
    93 stratification
    94 stratification of athletes
    95 study
    96 systematic method
    97 talent
    98 team basis
    99 team selection
    100 test
    101 time
    102 time trial
    103 training intervention
    104 training needs
    105 training strategy
    106 trials
    107 two-dimensional graphic displays
    108 values
    109 varsity athletes
    110 varsity group
    111 velocity model
    112 view
    113 y axes
    114 schema:name The development of physiological profiles and identification of training needs in NCAA female collegiate rowers using isoperformance curves
    115 schema:pagination 679-685
    116 schema:productId Ndafa0cd6988840969e8cd98a2659cb93
    117 Ne4195b9426284331901e31e3e297cb3d
    118 Ne6527ffcddd84df59e23e8076b0556c8
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019049161
    120 https://doi.org/10.1007/s00421-010-1683-4
    121 schema:sdDatePublished 2022-10-01T06:36
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher Nfde493216faf4016a5a032a9b53eef4a
    124 schema:url https://doi.org/10.1007/s00421-010-1683-4
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N02d13289536e4979bc97ab021dd5d500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Learning Curve
    130 rdf:type schema:DefinedTerm
    131 N09e93ac308b4465bbc74a9b90cf73229 rdf:first sg:person.0713555725.42
    132 rdf:rest rdf:nil
    133 N17177d3c85ba4cdcbe8532859bcc17a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Humans
    135 rdf:type schema:DefinedTerm
    136 N27caf36a29a9422e9803fdc717725021 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Adolescent
    138 rdf:type schema:DefinedTerm
    139 N31c03ff0a8e14127be23baec10f9db3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Female
    141 rdf:type schema:DefinedTerm
    142 N33010fd0c20a4c9a927f92e89d6cb242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Linear Models
    144 rdf:type schema:DefinedTerm
    145 N41e1723d881e4df1b4bc64b51d357d34 schema:volumeNumber 111
    146 rdf:type schema:PublicationVolume
    147 N4657462750e74efeab3012d038ddea88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Athletic Performance
    149 rdf:type schema:DefinedTerm
    150 N47aae2dcb395419cb3d45bf0607c0125 rdf:first sg:person.01051727674.48
    151 rdf:rest N68999f99916444a9989931d0c1fee046
    152 N57f5cc2ea1ee4fc6871750e8b1ff048f rdf:first sg:person.0751052435.39
    153 rdf:rest N776c0e8cc0c94f9a9e2c58bdf43dc171
    154 N62f275b2e3b349d7afc1c0b2807ea1d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Young Adult
    156 rdf:type schema:DefinedTerm
    157 N6494ce7eb3a54bb69d4bff46ac43608e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Sports
    159 rdf:type schema:DefinedTerm
    160 N681bbe63c45643ccaacfd748a95710da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Physical Education and Training
    162 rdf:type schema:DefinedTerm
    163 N68999f99916444a9989931d0c1fee046 rdf:first sg:person.0775653365.47
    164 rdf:rest N57f5cc2ea1ee4fc6871750e8b1ff048f
    165 N6b97e974bc4f4b11be5122bd18522853 schema:issueNumber 4
    166 rdf:type schema:PublicationIssue
    167 N776c0e8cc0c94f9a9e2c58bdf43dc171 rdf:first sg:person.0623604057.43
    168 rdf:rest N09e93ac308b4465bbc74a9b90cf73229
    169 N917b46dc5c4642af83f14b88993f0bec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Health Services Needs and Demand
    171 rdf:type schema:DefinedTerm
    172 Ndafa0cd6988840969e8cd98a2659cb93 schema:name pubmed_id
    173 schema:value 20963438
    174 rdf:type schema:PropertyValue
    175 Ndd6a1104399048bb9fa7e4b7e5270afd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Athletes
    177 rdf:type schema:DefinedTerm
    178 Ne4195b9426284331901e31e3e297cb3d schema:name dimensions_id
    179 schema:value pub.1019049161
    180 rdf:type schema:PropertyValue
    181 Ne6527ffcddd84df59e23e8076b0556c8 schema:name doi
    182 schema:value 10.1007/s00421-010-1683-4
    183 rdf:type schema:PropertyValue
    184 Nfde493216faf4016a5a032a9b53eef4a schema:name Springer Nature - SN SciGraph project
    185 rdf:type schema:Organization
    186 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Medical and Health Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Human Movement and Sports Science
    191 rdf:type schema:DefinedTerm
    192 sg:journal.1319730 schema:issn 1432-1025
    193 1439-6319
    194 schema:name European Journal of Applied Physiology
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.01051727674.48 schema:affiliation grid-institutes:grid.266900.b
    198 schema:familyName Fukuda
    199 schema:givenName David H.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051727674.48
    201 rdf:type schema:Person
    202 sg:person.0623604057.43 schema:affiliation grid-institutes:grid.266900.b
    203 schema:familyName Dwyer
    204 schema:givenName Teddi R.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623604057.43
    206 rdf:type schema:Person
    207 sg:person.0713555725.42 schema:affiliation grid-institutes:grid.266900.b
    208 schema:familyName Stout
    209 schema:givenName Jeffrey R.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713555725.42
    211 rdf:type schema:Person
    212 sg:person.0751052435.39 schema:affiliation grid-institutes:grid.266900.b
    213 schema:familyName Smith
    214 schema:givenName Abbie E.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751052435.39
    216 rdf:type schema:Person
    217 sg:person.0775653365.47 schema:affiliation grid-institutes:grid.266900.b
    218 schema:familyName Kendall
    219 schema:givenName Kristina L.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775653365.47
    221 rdf:type schema:Person
    222 sg:pub.10.1007/bf00357613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008043408
    223 https://doi.org/10.1007/bf00357613
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/bf00599239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015060201
    226 https://doi.org/10.1007/bf00599239
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00421-005-0088-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045378246
    229 https://doi.org/10.1007/s00421-005-0088-2
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00421-010-1474-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004223654
    232 https://doi.org/10.1007/s00421-010-1474-y
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s004210000375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042190349
    235 https://doi.org/10.1007/s004210000375
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s004210050160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021235791
    238 https://doi.org/10.1007/s004210050160
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s004210050509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005255942
    241 https://doi.org/10.1007/s004210050509
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s004390050781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884836
    244 https://doi.org/10.1007/s004390050781
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/1550-2783-7-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044150159
    247 https://doi.org/10.1186/1550-2783-7-10
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.2165/00007256-198401040-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044234129
    250 https://doi.org/10.2165/00007256-198401040-00005
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.2165/00007256-199315010-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011786476
    253 https://doi.org/10.2165/00007256-199315010-00004
    254 rdf:type schema:CreativeWork
    255 grid-institutes:grid.266900.b schema:alternateName Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA
    256 schema:name Metabolic and Body Composition Lab, Department of Health and Exercise Science, Huston Huffman Center, University of Oklahoma, 1401 Asp Avenue, 73019, Norman, OK, USA
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...