Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12-22

AUTHORS

Kiyoshi Sanada, Tsutomu Kuchiki, Motohiko Miyachi, Kelly McGrath, Mitsuru Higuchi, Hiroshi Ebashi

ABSTRACT

Ventilatory threshold (VT) is an important predictor of cardiorespiratory fitness, such as peak oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}),$$\end{document} and is a valuable index of aerobic exercise intensity. However, little is known about the role of skeletal muscle (SM) mass in the age-associated decline of VT. Therefore, the present study was performed to investigate the effects of age on cardiopulmonary fitness normalised for regional SM mass in 1,463 Japanese men and women, and to determine the relevance of VT normalised to SM mass based on age and gender. Total, trunk and thigh SM mass were measured using an ultrasound method, while \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} and VT were determined during treadmill walking. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} was estimated using the predicted maximum heart rate (HR) and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox{HR}{\text{--}}\dot{V}_{{{\text{O}}_{2}}}}$$\end{document} relationship for sub-maximal treadmill walking. There were significant negative correlations between VT normalised for body mass and age in men and women (P < 0.001). Age-associated declines were also observed in VT normalised for body mass in both men and women; however, VT normalised for SM mass was not significantly different with age. Significant correlations were also observed between thigh SM mass and VT in both men and women. These results suggest that thigh SM mass is closely associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} and/or VT in both men and women, and the decrease in VT with age is predominantly due to an age-related decline of SM mass. Moreover, this study provides normative cardiorespiratory fitness data regarding VT normalised SM mass in healthy men and women aged 20–80 years. More... »

PAGES

475-483

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00421-006-0375-6

DOI

http://dx.doi.org/10.1007/s00421-006-0375-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049941092

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17186296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Consumption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Ventilation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thigh", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanada", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.01100642414.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Integrated Humanistic and Cultural Studies, Graduate School of Integrated Science and Art, University of East Asia, Shimonoseki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413101.6", 
          "name": [
            "Division of Integrated Humanistic and Cultural Studies, Graduate School of Integrated Science and Art, University of East Asia, Shimonoseki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuchiki", 
        "givenName": "Tsutomu", 
        "id": "sg:person.01050665020.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050665020.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyachi", 
        "givenName": "Motohiko", 
        "id": "sg:person.01122201430.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiological Sciences and Sports Performance, National Institute of Fitness and Sports, Kanoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419589.8", 
          "name": [
            "Department of Physiological Sciences and Sports Performance, National Institute of Fitness and Sports, Kanoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McGrath", 
        "givenName": "Kelly", 
        "id": "sg:person.0766317502.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766317502.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higuchi", 
        "givenName": "Mitsuru", 
        "id": "sg:person.01342304226.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Integrated Cultures and Humanities, University of East Asia, Shimonoseki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413101.6", 
          "name": [
            "Faculty of Integrated Cultures and Humanities, University of East Asia, Shimonoseki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebashi", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01200430343.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200430343.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00421-005-0061-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002240691", 
          "https://doi.org/10.1007/s00421-005-0061-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00705071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050690088", 
          "https://doi.org/10.1007/bf00705071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-004-1250-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041252638", 
          "https://doi.org/10.1007/s00421-004-1250-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-003-0860-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023065454", 
          "https://doi.org/10.1007/s00421-003-0860-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12-22", 
    "datePublishedReg": "2006-12-22", 
    "description": "Ventilatory threshold (VT) is an important predictor of cardiorespiratory fitness, such as peak oxygen uptake \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\dot{V}_{{{\\text{O}}_{2} {\\text{peak}}}}),$$\\end{document} and is a valuable index of aerobic exercise intensity. However, little is known about the role of skeletal muscle (SM) mass in the age-associated decline of VT. Therefore, the present study was performed to investigate the effects of age on cardiopulmonary fitness normalised for regional SM mass in 1,463 Japanese men and women, and to determine the relevance of VT normalised to SM mass based on age and gender. Total, trunk and thigh SM mass were measured using an ultrasound method, while \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot{V}_{{{\\text{O}}_{2} {\\text{peak}}}}$$\\end{document} and VT were determined during treadmill walking. \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot{V}_{{{\\text{O}}_{2} {\\text{peak}}}}$$\\end{document} was estimated using the predicted maximum heart rate (HR) and the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\hbox{HR}{\\text{--}}\\dot{V}_{{{\\text{O}}_{2}}}}$$\\end{document} relationship for sub-maximal treadmill walking. There were significant negative correlations between VT normalised for body mass and age in men and women (P <\u00a0 0.001). Age-associated declines were also observed in VT normalised for body mass in both men and women; however, VT normalised for SM mass was not significantly different with age. Significant correlations were also observed between thigh SM mass and VT in both men and women. These results suggest that thigh SM mass is closely associated with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot{V}_{{{\\text{O}}_{2} {\\text{peak}}}}$$\\end{document} and/or VT in both men and women, and the decrease in VT with age is predominantly due to an age-related decline of SM mass. Moreover, this study provides normative cardiorespiratory fitness data regarding VT normalised SM mass in healthy men and women aged 20\u201380\u00a0years.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00421-006-0375-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "keywords": [
      "peak oxygen uptake", 
      "skeletal muscle mass", 
      "ventilatory threshold", 
      "age-associated decline", 
      "effect of age", 
      "SM mass", 
      "Japanese men", 
      "heart rate", 
      "treadmill walking", 
      "muscle mass", 
      "aerobic exercise intensity", 
      "cardiorespiratory fitness data", 
      "oxygen uptake", 
      "regional SM mass", 
      "regional skeletal muscle mass", 
      "maximum heart rate", 
      "cardiopulmonary fitness", 
      "body mass", 
      "age-related decline", 
      "healthy men", 
      "cardiorespiratory fitness", 
      "exercise intensity", 
      "significant negative correlation", 
      "women", 
      "age", 
      "men", 
      "significant correlation", 
      "valuable index", 
      "important predictor", 
      "present study", 
      "negative correlation", 
      "ultrasound method", 
      "walking", 
      "years", 
      "decline", 
      "uptake", 
      "predictors", 
      "trunk", 
      "fitness data", 
      "study", 
      "mass", 
      "correlation", 
      "effect", 
      "gender", 
      "threshold", 
      "fitness", 
      "index", 
      "decrease", 
      "role", 
      "rate", 
      "relevance", 
      "data", 
      "relationship", 
      "results", 
      "intensity", 
      "method"
    ], 
    "name": "Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and women aged 20\u201380 years", 
    "pagination": "475-483", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049941092"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00421-006-0375-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17186296"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00421-006-0375-6", 
      "https://app.dimensions.ai/details/publication/pub.1049941092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00421-006-0375-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0375-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0375-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0375-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0375-6'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      22 PREDICATES      113 URIs      101 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00421-006-0375-6 schema:about N01bed516f5b44f1b80830d0a19515754
2 N02d2b53366804aaa9edb17bc9c413bb0
3 N0e8c17305d2a4081b01c50b3e756d8d9
4 N0f9633b7057c46169aaf56c74be5f45d
5 N1d959c9a988b42ff97ebb3a0144deee9
6 N1f6e03569e344b239ac2f9f807866a9c
7 N2e3228ede23146f290bd0718d48fb30f
8 N4568083e98564ea694a498224511b6d3
9 N66488947fa504b0790cf03bc64c47431
10 N7011e39a6c834586904aa846dc58ad42
11 N728ed18a61c447939a785b9ec93a1ba8
12 N7d927fd650714e4d8e3d34b49b4b0c92
13 N7ed8b10b86184d80830c1e5c7ebdd2ce
14 N7f16d149c4f7479e964d5397517a7b9e
15 N853c98fd0ca24d3b864bf93f81dde31b
16 N88d458c3f3094ac69286a3216a466301
17 N8931f7cd2fff4f3abf57afea972b0190
18 Na598dc587d694a70b2310ccafd0c2acf
19 Na651466ea66c4bbd987f4e82ccb26882
20 Nd014d970fa134f45b1ff062254a35049
21 Nd382e597f11343cfae24c7763d4414a1
22 Ndef225a2fb3f4ad68b6e8da33ba09819
23 Ndfcd9d15d7304f8f8d62fef3e8881728
24 Ne019dcb37ce147439dcbaf68ef0e4a8f
25 Ned5bea68df024d1db414d461e14ffbd6
26 Nf820ce352406487ba278d31fe5ac1d8f
27 Nfd4d2eb8770544459f2ecb60eedeac55
28 anzsrc-for:11
29 anzsrc-for:1103
30 schema:author Nd03f2e3bd8974aa7b4ca8249f0cbb54d
31 schema:citation sg:pub.10.1007/bf00705071
32 sg:pub.10.1007/s00421-003-0860-0
33 sg:pub.10.1007/s00421-004-1250-y
34 sg:pub.10.1007/s00421-005-0061-0
35 schema:datePublished 2006-12-22
36 schema:datePublishedReg 2006-12-22
37 schema:description Ventilatory threshold (VT) is an important predictor of cardiorespiratory fitness, such as peak oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}),$$\end{document} and is a valuable index of aerobic exercise intensity. However, little is known about the role of skeletal muscle (SM) mass in the age-associated decline of VT. Therefore, the present study was performed to investigate the effects of age on cardiopulmonary fitness normalised for regional SM mass in 1,463 Japanese men and women, and to determine the relevance of VT normalised to SM mass based on age and gender. Total, trunk and thigh SM mass were measured using an ultrasound method, while \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} and VT were determined during treadmill walking. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} was estimated using the predicted maximum heart rate (HR) and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox{HR}{\text{--}}\dot{V}_{{{\text{O}}_{2}}}}$$\end{document} relationship for sub-maximal treadmill walking. There were significant negative correlations between VT normalised for body mass and age in men and women (P <  0.001). Age-associated declines were also observed in VT normalised for body mass in both men and women; however, VT normalised for SM mass was not significantly different with age. Significant correlations were also observed between thigh SM mass and VT in both men and women. These results suggest that thigh SM mass is closely associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{{\text{O}}_{2} {\text{peak}}}}$$\end{document} and/or VT in both men and women, and the decrease in VT with age is predominantly due to an age-related decline of SM mass. Moreover, this study provides normative cardiorespiratory fitness data regarding VT normalised SM mass in healthy men and women aged 20–80 years.
38 schema:genre article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N7bd5b11721bf4082bd9704a750ccde74
42 Ne3a35a55a5bf45e98a8c5df60d53f975
43 sg:journal.1319730
44 schema:keywords Japanese men
45 SM mass
46 aerobic exercise intensity
47 age
48 age-associated decline
49 age-related decline
50 body mass
51 cardiopulmonary fitness
52 cardiorespiratory fitness
53 cardiorespiratory fitness data
54 correlation
55 data
56 decline
57 decrease
58 effect
59 effect of age
60 exercise intensity
61 fitness
62 fitness data
63 gender
64 healthy men
65 heart rate
66 important predictor
67 index
68 intensity
69 mass
70 maximum heart rate
71 men
72 method
73 muscle mass
74 negative correlation
75 oxygen uptake
76 peak oxygen uptake
77 predictors
78 present study
79 rate
80 regional SM mass
81 regional skeletal muscle mass
82 relationship
83 relevance
84 results
85 role
86 significant correlation
87 significant negative correlation
88 skeletal muscle mass
89 study
90 threshold
91 treadmill walking
92 trunk
93 ultrasound method
94 uptake
95 valuable index
96 ventilatory threshold
97 walking
98 women
99 years
100 schema:name Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and women aged 20–80 years
101 schema:pagination 475-483
102 schema:productId N43edd070f8fb40df8912ecbf67d69f80
103 N7d17ea161fa9448caffc7b181f4f64ba
104 Nfdd36022f89c46ff89803822b390534b
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049941092
106 https://doi.org/10.1007/s00421-006-0375-6
107 schema:sdDatePublished 2022-06-01T22:06
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N598e7bc85da441cd9e8363f281c06cee
110 schema:url https://doi.org/10.1007/s00421-006-0375-6
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N01bed516f5b44f1b80830d0a19515754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Predictive Value of Tests
116 rdf:type schema:DefinedTerm
117 N02d2b53366804aaa9edb17bc9c413bb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Heart Rate
119 rdf:type schema:DefinedTerm
120 N0e4d883a4f5b440b887d7b8c682fa893 rdf:first sg:person.01200430343.12
121 rdf:rest rdf:nil
122 N0e8c17305d2a4081b01c50b3e756d8d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Exercise
124 rdf:type schema:DefinedTerm
125 N0f9633b7057c46169aaf56c74be5f45d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Linear Models
127 rdf:type schema:DefinedTerm
128 N1d959c9a988b42ff97ebb3a0144deee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Age Distribution
130 rdf:type schema:DefinedTerm
131 N1f6e03569e344b239ac2f9f807866a9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Analysis of Variance
133 rdf:type schema:DefinedTerm
134 N2e3228ede23146f290bd0718d48fb30f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Organ Size
136 rdf:type schema:DefinedTerm
137 N3545785319a64167827fd403a7c39109 rdf:first sg:person.01342304226.79
138 rdf:rest N0e4d883a4f5b440b887d7b8c682fa893
139 N43edd070f8fb40df8912ecbf67d69f80 schema:name dimensions_id
140 schema:value pub.1049941092
141 rdf:type schema:PropertyValue
142 N4568083e98564ea694a498224511b6d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Thigh
144 rdf:type schema:DefinedTerm
145 N598e7bc85da441cd9e8363f281c06cee schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N66488947fa504b0790cf03bc64c47431 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Sex Distribution
149 rdf:type schema:DefinedTerm
150 N7011e39a6c834586904aa846dc58ad42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aging
152 rdf:type schema:DefinedTerm
153 N728ed18a61c447939a785b9ec93a1ba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Female
155 rdf:type schema:DefinedTerm
156 N7bd5b11721bf4082bd9704a750ccde74 schema:volumeNumber 99
157 rdf:type schema:PublicationVolume
158 N7d17ea161fa9448caffc7b181f4f64ba schema:name pubmed_id
159 schema:value 17186296
160 rdf:type schema:PropertyValue
161 N7d927fd650714e4d8e3d34b49b4b0c92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Reference Values
163 rdf:type schema:DefinedTerm
164 N7ed8b10b86184d80830c1e5c7ebdd2ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Oxygen Consumption
166 rdf:type schema:DefinedTerm
167 N7f16d149c4f7479e964d5397517a7b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Muscle, Skeletal
169 rdf:type schema:DefinedTerm
170 N853c98fd0ca24d3b864bf93f81dde31b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Adult
172 rdf:type schema:DefinedTerm
173 N88d458c3f3094ac69286a3216a466301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Age Factors
175 rdf:type schema:DefinedTerm
176 N8931f7cd2fff4f3abf57afea972b0190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Asian Continental Ancestry Group
178 rdf:type schema:DefinedTerm
179 Na598dc587d694a70b2310ccafd0c2acf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Cross-Sectional Studies
181 rdf:type schema:DefinedTerm
182 Na651466ea66c4bbd987f4e82ccb26882 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Middle Aged
184 rdf:type schema:DefinedTerm
185 Na6c9ebe07d1b44f9ac63c0d16044817c rdf:first sg:person.01122201430.18
186 rdf:rest Na7c4ad92e4c04bf79df0d85bcd4b0f02
187 Na7c4ad92e4c04bf79df0d85bcd4b0f02 rdf:first sg:person.0766317502.68
188 rdf:rest N3545785319a64167827fd403a7c39109
189 Nd014d970fa134f45b1ff062254a35049 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Male
191 rdf:type schema:DefinedTerm
192 Nd03f2e3bd8974aa7b4ca8249f0cbb54d rdf:first sg:person.01100642414.49
193 rdf:rest Nde3c7bef76694704a867e5796d4b1723
194 Nd382e597f11343cfae24c7763d4414a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Pulmonary Ventilation
196 rdf:type schema:DefinedTerm
197 Nde3c7bef76694704a867e5796d4b1723 rdf:first sg:person.01050665020.79
198 rdf:rest Na6c9ebe07d1b44f9ac63c0d16044817c
199 Ndef225a2fb3f4ad68b6e8da33ba09819 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Humans
201 rdf:type schema:DefinedTerm
202 Ndfcd9d15d7304f8f8d62fef3e8881728 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Ultrasonography
204 rdf:type schema:DefinedTerm
205 Ne019dcb37ce147439dcbaf68ef0e4a8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Aged
207 rdf:type schema:DefinedTerm
208 Ne3a35a55a5bf45e98a8c5df60d53f975 schema:issueNumber 5
209 rdf:type schema:PublicationIssue
210 Ned5bea68df024d1db414d461e14ffbd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Sex Factors
212 rdf:type schema:DefinedTerm
213 Nf820ce352406487ba278d31fe5ac1d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Body Weight
215 rdf:type schema:DefinedTerm
216 Nfd4d2eb8770544459f2ecb60eedeac55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Japan
218 rdf:type schema:DefinedTerm
219 Nfdd36022f89c46ff89803822b390534b schema:name doi
220 schema:value 10.1007/s00421-006-0375-6
221 rdf:type schema:PropertyValue
222 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
223 schema:name Medical and Health Sciences
224 rdf:type schema:DefinedTerm
225 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
226 schema:name Clinical Sciences
227 rdf:type schema:DefinedTerm
228 sg:journal.1319730 schema:issn 1432-1025
229 1439-6319
230 schema:name European Journal of Applied Physiology
231 schema:publisher Springer Nature
232 rdf:type schema:Periodical
233 sg:person.01050665020.79 schema:affiliation grid-institutes:grid.413101.6
234 schema:familyName Kuchiki
235 schema:givenName Tsutomu
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050665020.79
237 rdf:type schema:Person
238 sg:person.01100642414.49 schema:affiliation grid-institutes:grid.5290.e
239 schema:familyName Sanada
240 schema:givenName Kiyoshi
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49
242 rdf:type schema:Person
243 sg:person.01122201430.18 schema:affiliation grid-institutes:grid.482562.f
244 schema:familyName Miyachi
245 schema:givenName Motohiko
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18
247 rdf:type schema:Person
248 sg:person.01200430343.12 schema:affiliation grid-institutes:grid.413101.6
249 schema:familyName Ebashi
250 schema:givenName Hiroshi
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200430343.12
252 rdf:type schema:Person
253 sg:person.01342304226.79 schema:affiliation grid-institutes:grid.5290.e
254 schema:familyName Higuchi
255 schema:givenName Mitsuru
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79
257 rdf:type schema:Person
258 sg:person.0766317502.68 schema:affiliation grid-institutes:grid.419589.8
259 schema:familyName McGrath
260 schema:givenName Kelly
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766317502.68
262 rdf:type schema:Person
263 sg:pub.10.1007/bf00705071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050690088
264 https://doi.org/10.1007/bf00705071
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s00421-003-0860-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023065454
267 https://doi.org/10.1007/s00421-003-0860-0
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00421-004-1250-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041252638
270 https://doi.org/10.1007/s00421-004-1250-y
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s00421-005-0061-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002240691
273 https://doi.org/10.1007/s00421-005-0061-0
274 rdf:type schema:CreativeWork
275 grid-institutes:grid.413101.6 schema:alternateName Division of Integrated Humanistic and Cultural Studies, Graduate School of Integrated Science and Art, University of East Asia, Shimonoseki, Japan
276 Faculty of Integrated Cultures and Humanities, University of East Asia, Shimonoseki, Japan
277 schema:name Division of Integrated Humanistic and Cultural Studies, Graduate School of Integrated Science and Art, University of East Asia, Shimonoseki, Japan
278 Faculty of Integrated Cultures and Humanities, University of East Asia, Shimonoseki, Japan
279 rdf:type schema:Organization
280 grid-institutes:grid.419589.8 schema:alternateName Department of Physiological Sciences and Sports Performance, National Institute of Fitness and Sports, Kanoya, Japan
281 schema:name Department of Physiological Sciences and Sports Performance, National Institute of Fitness and Sports, Kanoya, Japan
282 rdf:type schema:Organization
283 grid-institutes:grid.482562.f schema:alternateName National Institute of Health and Nutrition, Tokyo, Japan
284 schema:name National Institute of Health and Nutrition, Tokyo, Japan
285 rdf:type schema:Organization
286 grid-institutes:grid.5290.e schema:alternateName Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan
287 Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
288 schema:name Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan
289 Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...