Ontology type: schema:ScholarlyArticle
2006-11-07
AUTHORSKiyoshi Sanada, Taishi Midorikawa, Tomohiro Yasuda, Charles F. Kearns, Takashi Abe
ABSTRACTThe present study developed nonexercise models for predicting maximal oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\dot{{V}}}\hbox{O}_{\rm{2max}})$$\end{document} using skeletal muscle (SM) mass and cardiac dimensions and to investigate the validity of these equations in healthy Japanese young men. Sixty healthy Japanese men were randomly separated into two groups: 40 in the development group and 20 in the validation group. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} during treadmill running was measured using an automated breath-by-breath mass spectrometry system. Left ventricular internal dimensions at end-diastole (LVIDD) and at end-systole (LVIDS) were measured using M-mode ultrasound with a 2.5 MHz transducer. Stroke volume (SV) was calculated based on the Pombo rule. SM mass was predicted by B-mode ultrasound muscle thickness. Correlations were observed between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} and predicted thigh (r = 0.74, P < 0.001) and lower leg SM mass (r = 0.55, P < 0.001). Furthermore, there were correlations between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} and LVIDD (r = 0.74, P < 0.001) and SV (r = 0.72, P < 0.001). Stepwise regression analysis was applied to thigh SM mass and SV for prediction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} in the development group, and these parameters were closely correlated with absolute measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}\ ({R}^{2}=0.72, P < 0.001)$$\end{document} by multiple regression analysis. When the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} prediction equations were applied to the validation group, significant correlations were also observed between the measured and predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}\ ({R}^{2}=0.83, P < 0.001).$$\end{document} These results suggested that nonexercise prediction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} using thigh SM mass and cardiac dimension is a valid method to predict \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} in young Japanese adults. More... »
PAGES143-148
http://scigraph.springernature.com/pub.10.1007/s00421-006-0325-3
DOIhttp://dx.doi.org/10.1007/s00421-006-0325-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041058342
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/17115179
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Asians",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Exercise Test",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart Ventricles",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Japan",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Muscle, Skeletal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Organ Size",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Oxygen Consumption",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Predictive Value of Tests",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reference Values",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Stroke Volume",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ultrasonography",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.265074.2",
"name": [
"Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan",
"Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Sanada",
"givenName": "Kiyoshi",
"id": "sg:person.01100642414.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.265074.2",
"name": [
"Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Midorikawa",
"givenName": "Taishi",
"id": "sg:person.0762567575.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762567575.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.265074.2",
"name": [
"Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Yasuda",
"givenName": "Tomohiro",
"id": "sg:person.01351450727.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351450727.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.265074.2",
"name": [
"Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Kearns",
"givenName": "Charles F.",
"id": "sg:person.01051074015.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051074015.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.265074.2",
"name": [
"Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Abe",
"givenName": "Takashi",
"id": "sg:person.013620221043.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620221043.16"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00933320",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049290734",
"https://doi.org/10.1007/bf00933320"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00421-004-1250-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041252638",
"https://doi.org/10.1007/s00421-004-1250-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00421-005-0061-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002240691",
"https://doi.org/10.1007/s00421-005-0061-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-11-07",
"datePublishedReg": "2006-11-07",
"description": "The present study developed nonexercise models for predicting maximal oxygen uptake \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$({\\dot{{V}}}\\hbox{O}_{\\rm{2max}})$$\\end{document} using skeletal muscle (SM) mass and cardiac dimensions and to investigate the validity of these equations in healthy Japanese young men. Sixty healthy Japanese men were randomly separated into two groups: 40 in the development group and 20 in the validation group. \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} during treadmill running was measured using an automated breath-by-breath mass spectrometry system. Left ventricular internal dimensions at end-diastole (LVIDD) and at end-systole (LVIDS) were measured using M-mode ultrasound with a 2.5\u00a0MHz transducer. Stroke volume (SV) was calculated based on the Pombo rule. SM mass was predicted by B-mode ultrasound muscle thickness. Correlations were observed between \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} and predicted thigh (r\u00a0=\u00a00.74, P <\u00a00.001) and lower leg SM mass (r\u00a0=\u00a00.55, P <\u00a00.001). Furthermore, there were correlations between \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} and LVIDD (r\u00a0=\u00a00.74, P <\u00a00.001) and SV (r\u00a0=\u00a00.72, P <\u00a00.001). Stepwise regression analysis was applied to thigh SM mass and SV for prediction of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} in the development group, and these parameters were closely correlated with absolute measured \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}\\ ({R}^{2}=0.72, P < 0.001)$$\\end{document} by multiple regression analysis. When the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} prediction equations were applied to the validation group, significant correlations were also observed between the measured and predicted \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}\\ ({R}^{2}=0.83, P < 0.001).$$\\end{document} These results suggested that nonexercise prediction of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} using thigh SM mass and cardiac dimension is a valid method to predict \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\dot{{V}}}\\hbox{O}_{\\rm{2max}}$$\\end{document} in young Japanese adults.",
"genre": "article",
"id": "sg:pub.10.1007/s00421-006-0325-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1319730",
"issn": [
"1439-6319",
"1432-1025"
],
"name": "European Journal of Applied Physiology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "99"
}
],
"keywords": [
"stroke volume",
"maximal oxygen uptake",
"SM mass",
"cardiac dimensions",
"validation group",
"left ventricular internal dimension",
"ventricular internal dimension",
"healthy Japanese men",
"oxygen uptake",
"young men",
"skeletal muscle mass",
"regression analysis",
"M-mode ultrasound",
"Japanese young men",
"nonexercise models",
"ultrasound muscle thickness",
"young Japanese adults",
"Japanese men",
"muscle thickness",
"muscle mass",
"treadmill running",
"Japanese adults",
"stepwise regression analysis",
"end diastole",
"development group",
"significant correlation",
"multiple regression analysis",
"men",
"present study",
"MHz transducer",
"group",
"valid method",
"internal dimensions",
"LVIDd",
"thigh",
"uptake",
"breath",
"ultrasound",
"adults",
"correlation",
"mass",
"mass spectrometry system",
"study",
"prediction equations",
"analysis",
"volume",
"running",
"prediction model",
"spectrometry system",
"development",
"validity",
"model",
"results",
"transducer",
"method",
"thickness",
"parameters",
"system",
"prediction",
"dimensions",
"rules",
"equations"
],
"name": "Development of nonexercise prediction models of maximal oxygen uptake in healthy Japanese young men",
"pagination": "143-148",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041058342"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00421-006-0325-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"17115179"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00421-006-0325-3",
"https://app.dimensions.ai/details/publication/pub.1041058342"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_432.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00421-006-0325-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0325-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0325-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0325-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-006-0325-3'
This table displays all metadata directly associated to this object as RDF triples.
233 TRIPLES
22 PREDICATES
108 URIs
97 LITERALS
24 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00421-006-0325-3 | schema:about | N0ee91246813b46b895f5746a7668cf09 |
2 | ″ | ″ | N0f51bd8c8aee4651886eaad183bc2f43 |
3 | ″ | ″ | N155aded5bc4149ccb496997ab65dc816 |
4 | ″ | ″ | N16bd46f450f84900abef554dbe378d39 |
5 | ″ | ″ | N63ccc13dabed4c3580c5ea8f970c7c16 |
6 | ″ | ″ | N728071d190554289910e5d268c6281c3 |
7 | ″ | ″ | N7720b95e2ca848b3af4fd9ee812b4124 |
8 | ″ | ″ | N84966cb0d5d64575b36632d36f83a365 |
9 | ″ | ″ | N97dcd9569f6d449fb04b1b3bdcb24045 |
10 | ″ | ″ | N9a9ca300b1d34c39912501f55548dd72 |
11 | ″ | ″ | Na7374ce1ffb04e3fa87bd8181d53885d |
12 | ″ | ″ | Nb61a44c6a34e405a8c258326180e3014 |
13 | ″ | ″ | Nc4bc41f88c6840a28ae5a519402ed209 |
14 | ″ | ″ | Nd32f08f894a545bf80d40715aa4022bc |
15 | ″ | ″ | Ned4688433f5842ca8a735adf92c64375 |
16 | ″ | ″ | Nf65a04cc67474152b0fa9fdc5258b0e6 |
17 | ″ | ″ | Nf8178e819b744c0399314b772dcc333b |
18 | ″ | ″ | anzsrc-for:11 |
19 | ″ | ″ | anzsrc-for:1103 |
20 | ″ | schema:author | N32fdfb477aa24269a82478493d6fcd52 |
21 | ″ | schema:citation | sg:pub.10.1007/bf00933320 |
22 | ″ | ″ | sg:pub.10.1007/s00421-004-1250-y |
23 | ″ | ″ | sg:pub.10.1007/s00421-005-0061-0 |
24 | ″ | schema:datePublished | 2006-11-07 |
25 | ″ | schema:datePublishedReg | 2006-11-07 |
26 | ″ | schema:description | The present study developed nonexercise models for predicting maximal oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\dot{{V}}}\hbox{O}_{\rm{2max}})$$\end{document} using skeletal muscle (SM) mass and cardiac dimensions and to investigate the validity of these equations in healthy Japanese young men. Sixty healthy Japanese men were randomly separated into two groups: 40 in the development group and 20 in the validation group. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} during treadmill running was measured using an automated breath-by-breath mass spectrometry system. Left ventricular internal dimensions at end-diastole (LVIDD) and at end-systole (LVIDS) were measured using M-mode ultrasound with a 2.5 MHz transducer. Stroke volume (SV) was calculated based on the Pombo rule. SM mass was predicted by B-mode ultrasound muscle thickness. Correlations were observed between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} and predicted thigh (r = 0.74, P < 0.001) and lower leg SM mass (r = 0.55, P < 0.001). Furthermore, there were correlations between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} and LVIDD (r = 0.74, P < 0.001) and SV (r = 0.72, P < 0.001). Stepwise regression analysis was applied to thigh SM mass and SV for prediction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} in the development group, and these parameters were closely correlated with absolute measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}\ ({R}^{2}=0.72, P < 0.001)$$\end{document} by multiple regression analysis. When the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} prediction equations were applied to the validation group, significant correlations were also observed between the measured and predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}\ ({R}^{2}=0.83, P < 0.001).$$\end{document} These results suggested that nonexercise prediction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} using thigh SM mass and cardiac dimension is a valid method to predict \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{{V}}}\hbox{O}_{\rm{2max}}$$\end{document} in young Japanese adults. |
27 | ″ | schema:genre | article |
28 | ″ | schema:inLanguage | en |
29 | ″ | schema:isAccessibleForFree | false |
30 | ″ | schema:isPartOf | N983771cfd1ee406192525eafca75a4b0 |
31 | ″ | ″ | Nca04e0bda7bf49d8940de068f3f7fe94 |
32 | ″ | ″ | sg:journal.1319730 |
33 | ″ | schema:keywords | Japanese adults |
34 | ″ | ″ | Japanese men |
35 | ″ | ″ | Japanese young men |
36 | ″ | ″ | LVIDd |
37 | ″ | ″ | M-mode ultrasound |
38 | ″ | ″ | MHz transducer |
39 | ″ | ″ | SM mass |
40 | ″ | ″ | adults |
41 | ″ | ″ | analysis |
42 | ″ | ″ | breath |
43 | ″ | ″ | cardiac dimensions |
44 | ″ | ″ | correlation |
45 | ″ | ″ | development |
46 | ″ | ″ | development group |
47 | ″ | ″ | dimensions |
48 | ″ | ″ | end diastole |
49 | ″ | ″ | equations |
50 | ″ | ″ | group |
51 | ″ | ″ | healthy Japanese men |
52 | ″ | ″ | internal dimensions |
53 | ″ | ″ | left ventricular internal dimension |
54 | ″ | ″ | mass |
55 | ″ | ″ | mass spectrometry system |
56 | ″ | ″ | maximal oxygen uptake |
57 | ″ | ″ | men |
58 | ″ | ″ | method |
59 | ″ | ″ | model |
60 | ″ | ″ | multiple regression analysis |
61 | ″ | ″ | muscle mass |
62 | ″ | ″ | muscle thickness |
63 | ″ | ″ | nonexercise models |
64 | ″ | ″ | oxygen uptake |
65 | ″ | ″ | parameters |
66 | ″ | ″ | prediction |
67 | ″ | ″ | prediction equations |
68 | ″ | ″ | prediction model |
69 | ″ | ″ | present study |
70 | ″ | ″ | regression analysis |
71 | ″ | ″ | results |
72 | ″ | ″ | rules |
73 | ″ | ″ | running |
74 | ″ | ″ | significant correlation |
75 | ″ | ″ | skeletal muscle mass |
76 | ″ | ″ | spectrometry system |
77 | ″ | ″ | stepwise regression analysis |
78 | ″ | ″ | stroke volume |
79 | ″ | ″ | study |
80 | ″ | ″ | system |
81 | ″ | ″ | thickness |
82 | ″ | ″ | thigh |
83 | ″ | ″ | transducer |
84 | ″ | ″ | treadmill running |
85 | ″ | ″ | ultrasound |
86 | ″ | ″ | ultrasound muscle thickness |
87 | ″ | ″ | uptake |
88 | ″ | ″ | valid method |
89 | ″ | ″ | validation group |
90 | ″ | ″ | validity |
91 | ″ | ″ | ventricular internal dimension |
92 | ″ | ″ | volume |
93 | ″ | ″ | young Japanese adults |
94 | ″ | ″ | young men |
95 | ″ | schema:name | Development of nonexercise prediction models of maximal oxygen uptake in healthy Japanese young men |
96 | ″ | schema:pagination | 143-148 |
97 | ″ | schema:productId | N5b7ee2ab7b554f16b3c125420894c6fc |
98 | ″ | ″ | N67cea2f561184fabb81997ec76db6abb |
99 | ″ | ″ | Nb27965d9bcc4473f8d7dec956812a6ce |
100 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041058342 |
101 | ″ | ″ | https://doi.org/10.1007/s00421-006-0325-3 |
102 | ″ | schema:sdDatePublished | 2022-06-01T22:04 |
103 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
104 | ″ | schema:sdPublisher | N8e30ec38229d4df98fcdb75fa50afcce |
105 | ″ | schema:url | https://doi.org/10.1007/s00421-006-0325-3 |
106 | ″ | sgo:license | sg:explorer/license/ |
107 | ″ | sgo:sdDataset | articles |
108 | ″ | rdf:type | schema:ScholarlyArticle |
109 | N001d4a5d50d5406fb97a8eafcb388ff4 | rdf:first | sg:person.0762567575.13 |
110 | ″ | rdf:rest | N8c2af4e121ad43a9a0588a078172655c |
111 | N0ee91246813b46b895f5746a7668cf09 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
112 | ″ | schema:name | Adult |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | N0f51bd8c8aee4651886eaad183bc2f43 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
115 | ″ | schema:name | Reproducibility of Results |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | N155aded5bc4149ccb496997ab65dc816 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
118 | ″ | schema:name | Muscle, Skeletal |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | N16bd46f450f84900abef554dbe378d39 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
121 | ″ | schema:name | Stroke Volume |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | N227c412d68214969a05197297b43069b | rdf:first | sg:person.013620221043.16 |
124 | ″ | rdf:rest | rdf:nil |
125 | N32fdfb477aa24269a82478493d6fcd52 | rdf:first | sg:person.01100642414.49 |
126 | ″ | rdf:rest | N001d4a5d50d5406fb97a8eafcb388ff4 |
127 | N5b7ee2ab7b554f16b3c125420894c6fc | schema:name | pubmed_id |
128 | ″ | schema:value | 17115179 |
129 | ″ | rdf:type | schema:PropertyValue |
130 | N63ccc13dabed4c3580c5ea8f970c7c16 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Heart |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | N67cea2f561184fabb81997ec76db6abb | schema:name | doi |
134 | ″ | schema:value | 10.1007/s00421-006-0325-3 |
135 | ″ | rdf:type | schema:PropertyValue |
136 | N728071d190554289910e5d268c6281c3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Oxygen Consumption |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | N7720b95e2ca848b3af4fd9ee812b4124 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
140 | ″ | schema:name | Reference Values |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | N84966cb0d5d64575b36632d36f83a365 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Humans |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | N8c2af4e121ad43a9a0588a078172655c | rdf:first | sg:person.01351450727.44 |
146 | ″ | rdf:rest | Na0ddd23db8c9491b826413052158503e |
147 | N8e30ec38229d4df98fcdb75fa50afcce | schema:name | Springer Nature - SN SciGraph project |
148 | ″ | rdf:type | schema:Organization |
149 | N97dcd9569f6d449fb04b1b3bdcb24045 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
150 | ″ | schema:name | Ultrasonography |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | N983771cfd1ee406192525eafca75a4b0 | schema:volumeNumber | 99 |
153 | ″ | rdf:type | schema:PublicationVolume |
154 | N9a9ca300b1d34c39912501f55548dd72 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
155 | ″ | schema:name | Models, Biological |
156 | ″ | rdf:type | schema:DefinedTerm |
157 | Na0ddd23db8c9491b826413052158503e | rdf:first | sg:person.01051074015.77 |
158 | ″ | rdf:rest | N227c412d68214969a05197297b43069b |
159 | Na7374ce1ffb04e3fa87bd8181d53885d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
160 | ″ | schema:name | Asians |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | Nb27965d9bcc4473f8d7dec956812a6ce | schema:name | dimensions_id |
163 | ″ | schema:value | pub.1041058342 |
164 | ″ | rdf:type | schema:PropertyValue |
165 | Nb61a44c6a34e405a8c258326180e3014 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
166 | ″ | schema:name | Predictive Value of Tests |
167 | ″ | rdf:type | schema:DefinedTerm |
168 | Nc4bc41f88c6840a28ae5a519402ed209 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
169 | ″ | schema:name | Japan |
170 | ″ | rdf:type | schema:DefinedTerm |
171 | Nca04e0bda7bf49d8940de068f3f7fe94 | schema:issueNumber | 2 |
172 | ″ | rdf:type | schema:PublicationIssue |
173 | Nd32f08f894a545bf80d40715aa4022bc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
174 | ″ | schema:name | Organ Size |
175 | ″ | rdf:type | schema:DefinedTerm |
176 | Ned4688433f5842ca8a735adf92c64375 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
177 | ″ | schema:name | Exercise Test |
178 | ″ | rdf:type | schema:DefinedTerm |
179 | Nf65a04cc67474152b0fa9fdc5258b0e6 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
180 | ″ | schema:name | Heart Ventricles |
181 | ″ | rdf:type | schema:DefinedTerm |
182 | Nf8178e819b744c0399314b772dcc333b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
183 | ″ | schema:name | Male |
184 | ″ | rdf:type | schema:DefinedTerm |
185 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
186 | ″ | schema:name | Medical and Health Sciences |
187 | ″ | rdf:type | schema:DefinedTerm |
188 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
189 | ″ | schema:name | Clinical Sciences |
190 | ″ | rdf:type | schema:DefinedTerm |
191 | sg:journal.1319730 | schema:issn | 1432-1025 |
192 | ″ | ″ | 1439-6319 |
193 | ″ | schema:name | European Journal of Applied Physiology |
194 | ″ | schema:publisher | Springer Nature |
195 | ″ | rdf:type | schema:Periodical |
196 | sg:person.01051074015.77 | schema:affiliation | grid-institutes:grid.265074.2 |
197 | ″ | schema:familyName | Kearns |
198 | ″ | schema:givenName | Charles F. |
199 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051074015.77 |
200 | ″ | rdf:type | schema:Person |
201 | sg:person.01100642414.49 | schema:affiliation | grid-institutes:grid.265074.2 |
202 | ″ | schema:familyName | Sanada |
203 | ″ | schema:givenName | Kiyoshi |
204 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49 |
205 | ″ | rdf:type | schema:Person |
206 | sg:person.01351450727.44 | schema:affiliation | grid-institutes:grid.265074.2 |
207 | ″ | schema:familyName | Yasuda |
208 | ″ | schema:givenName | Tomohiro |
209 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351450727.44 |
210 | ″ | rdf:type | schema:Person |
211 | sg:person.013620221043.16 | schema:affiliation | grid-institutes:grid.265074.2 |
212 | ″ | schema:familyName | Abe |
213 | ″ | schema:givenName | Takashi |
214 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620221043.16 |
215 | ″ | rdf:type | schema:Person |
216 | sg:person.0762567575.13 | schema:affiliation | grid-institutes:grid.265074.2 |
217 | ″ | schema:familyName | Midorikawa |
218 | ″ | schema:givenName | Taishi |
219 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762567575.13 |
220 | ″ | rdf:type | schema:Person |
221 | sg:pub.10.1007/bf00933320 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049290734 |
222 | ″ | ″ | https://doi.org/10.1007/bf00933320 |
223 | ″ | rdf:type | schema:CreativeWork |
224 | sg:pub.10.1007/s00421-004-1250-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041252638 |
225 | ″ | ″ | https://doi.org/10.1007/s00421-004-1250-y |
226 | ″ | rdf:type | schema:CreativeWork |
227 | sg:pub.10.1007/s00421-005-0061-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002240691 |
228 | ″ | ″ | https://doi.org/10.1007/s00421-005-0061-0 |
229 | ″ | rdf:type | schema:CreativeWork |
230 | grid-institutes:grid.265074.2 | schema:alternateName | Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan |
231 | ″ | schema:name | Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan |
232 | ″ | ″ | Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan |
233 | ″ | rdf:type | schema:Organization |