Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-10-19

AUTHORS

Kiyoshi Sanada, Charles F. Kearns, Taishi Midorikawa, Takashi Abe

ABSTRACT

The present study was performed to develop regression-based prediction equations for skeletal muscle (SM) mass by ultrasound and to investigate the validity of these equations in Japanese adults. Seventy-two Japanese men (n=38) and women (n=34) aged 18–61 years participated in this study and were randomly separated into two groups: the model development group (n=48) and the validation group (n=24). The total and regional SM mass were measured using magnetic resonance imaging (MRI) 1.5 T-scanners with spin-echo sequence. Contiguous transverse images (about 150 slices) with a slice thickness of 1 cm were obtained from the first cervical vertebra to the ankle joints. The volume of SM was calculated from the summation of digitized cross-sectional area. The SM volume was converted into mass units (kg) by an assumed SM density of 1.04 kg l−1. The muscle thickness (MTH) was measured by B-mode ultrasound (5 MHz scanning head) at nine sites on the anatomical SM belly. Strong correlations were observed between the site-matched SM mass (total, arm, trunk body, thigh, and lower leg) by MRI measurement and the MTH × height (in m) in the model development group (r=0.83–0.96 in men, r=0.53–0.91 in women, P<0.05). When the SM mass prediction equations were applied to the validation group, significant correlations were also observed between the MRI-measured and predicted SM mass (P<0.05). The predicted total SM mass for the validation group was 19.6 (6.5) kg and was not significantly different from the MRI-measured SM mass of 20.2 (6.5) kg. Bland–Altman analysis did not indicate a bias in prediction of the total SM mass for the validation group (r=0.00, NS). These results suggested that ultrasound-derived prediction equations are a valid method to predict SM mass and an alternative to MRI measurement in healthy Japanese adults. More... »

PAGES

24-31

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00421-005-0061-0

DOI

http://dx.doi.org/10.1007/s00421-005-0061-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002240691

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16235068


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weights and Measures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanada", 
        "givenName": "Kiyoshi", 
        "id": "sg:person.01100642414.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kearns", 
        "givenName": "Charles F.", 
        "id": "sg:person.01051074015.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051074015.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Midorikawa", 
        "givenName": "Taishi", 
        "id": "sg:person.0762567575.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762567575.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Takashi", 
        "id": "sg:person.013620221043.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620221043.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s004210100468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040400150", 
          "https://doi.org/10.1007/s004210100468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-198805020-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040449838", 
          "https://doi.org/10.2165/00007256-198805020-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-003-1034-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740902", 
          "https://doi.org/10.1007/s00421-003-1034-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-198805010-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048158144", 
          "https://doi.org/10.2165/00007256-198805010-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-003-0961-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046275115", 
          "https://doi.org/10.1007/s00421-003-0961-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004210050394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007367687", 
          "https://doi.org/10.1007/s004210050394"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-10-19", 
    "datePublishedReg": "2005-10-19", 
    "description": "The present study was performed to develop regression-based prediction equations for skeletal muscle (SM) mass by ultrasound and to investigate the validity of these equations in Japanese adults. Seventy-two Japanese men (n=38) and women (n=34) aged 18\u201361\u00a0years participated in this study and were randomly separated into two groups: the model development group (n=48) and the validation group (n=24). The total and regional SM mass were measured using magnetic resonance imaging (MRI) 1.5 T-scanners with spin-echo sequence. Contiguous transverse images (about 150 slices) with a slice thickness of 1\u00a0cm were obtained from the first cervical vertebra to the ankle joints. The volume of SM was calculated from the summation of digitized cross-sectional area. The SM volume was converted into mass units (kg) by an assumed SM density of 1.04\u00a0kg\u00a0l\u22121. The muscle thickness (MTH) was measured by B-mode ultrasound (5\u00a0MHz scanning head) at nine sites on the anatomical SM belly. Strong correlations were observed between the site-matched SM mass (total, arm, trunk body, thigh, and lower leg) by MRI measurement and the MTH\u00a0\u00d7\u00a0height (in m) in the model development group (r=0.83\u20130.96 in men, r=0.53\u20130.91 in women, P<0.05). When the SM mass prediction equations were applied to the validation group, significant correlations were also observed between the MRI-measured and predicted SM mass (P<0.05). The predicted total SM mass for the validation group was 19.6 (6.5)\u00a0kg and was not significantly different from the MRI-measured SM mass of 20.2 (6.5)\u00a0kg. Bland\u2013Altman analysis did not indicate a bias in prediction of the total SM mass for the validation group (r=0.00, NS). These results suggested that ultrasound-derived prediction equations are a valid method to predict SM mass and an alternative to MRI measurement in healthy Japanese adults.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00421-005-0061-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "96"
      }
    ], 
    "keywords": [
      "skeletal muscle mass", 
      "total SM mass", 
      "validation group", 
      "muscle thickness", 
      "Japanese adults", 
      "SM mass", 
      "muscle mass", 
      "model development group", 
      "contiguous transverse images", 
      "MRI measurements", 
      "healthy Japanese adults", 
      "regional skeletal muscle mass", 
      "regional SM mass", 
      "B-mode ultrasound", 
      "first cervical vertebra", 
      "Bland-Altman analysis", 
      "Japanese men", 
      "ankle joint", 
      "SM volume", 
      "cervical vertebrae", 
      "development group", 
      "cross-sectional area", 
      "SM density", 
      "T scanner", 
      "spin-echo sequence", 
      "significant correlation", 
      "ultrasound", 
      "transverse images", 
      "adults", 
      "MRI", 
      "present study", 
      "group", 
      "slice thickness", 
      "valid method", 
      "strong correlation", 
      "women", 
      "prediction equations", 
      "men", 
      "vertebrae", 
      "study", 
      "regression-based prediction equations", 
      "mass", 
      "belly", 
      "correlation", 
      "volume", 
      "years", 
      "joints", 
      "sites", 
      "units", 
      "bias", 
      "alternative", 
      "validity", 
      "analysis", 
      "validation", 
      "area", 
      "measurements", 
      "results", 
      "thickness", 
      "summation", 
      "height", 
      "Sm", 
      "method", 
      "sequence", 
      "images", 
      "prediction", 
      "mass units", 
      "density", 
      "equations"
    ], 
    "name": "Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults", 
    "pagination": "24-31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002240691"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00421-005-0061-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16235068"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00421-005-0061-0", 
      "https://app.dimensions.ai/details/publication/pub.1002240691"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_408.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00421-005-0061-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00421-005-0061-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00421-005-0061-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00421-005-0061-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00421-005-0061-0'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      111 URIs      97 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00421-005-0061-0 schema:about N0780294d58674985becc1388c8616885
2 N2fea204de00147a09dcd62205d92bfe3
3 N777385fc7e04447181f8d3b936fac6a1
4 N7a28779fc519482ea90e6dae279825e7
5 N8188f7e3980540588921857f8991489b
6 N9b1fe81a83a94c099ff6d1f03fde5f18
7 Na0f16b15cd084b31a91e724010862f9d
8 Nc90109b3336a4b139f845a25edf64a16
9 Ncd5019f2a2ad413689856b80b0e0eb76
10 Ne30d886ed3c4456fa05cda470c8b0ca9
11 Ne4c9c0bf867a47fabdf26898055b7001
12 Nfafcc12e77df406796d49b4999367095
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author Nfb1e2f50d9bd44e78742f4a755d488bd
16 schema:citation sg:pub.10.1007/s00421-003-0961-9
17 sg:pub.10.1007/s00421-003-1034-9
18 sg:pub.10.1007/s004210050394
19 sg:pub.10.1007/s004210100468
20 sg:pub.10.2165/00007256-198805010-00003
21 sg:pub.10.2165/00007256-198805020-00002
22 schema:datePublished 2005-10-19
23 schema:datePublishedReg 2005-10-19
24 schema:description The present study was performed to develop regression-based prediction equations for skeletal muscle (SM) mass by ultrasound and to investigate the validity of these equations in Japanese adults. Seventy-two Japanese men (n=38) and women (n=34) aged 18–61 years participated in this study and were randomly separated into two groups: the model development group (n=48) and the validation group (n=24). The total and regional SM mass were measured using magnetic resonance imaging (MRI) 1.5 T-scanners with spin-echo sequence. Contiguous transverse images (about 150 slices) with a slice thickness of 1 cm were obtained from the first cervical vertebra to the ankle joints. The volume of SM was calculated from the summation of digitized cross-sectional area. The SM volume was converted into mass units (kg) by an assumed SM density of 1.04 kg l−1. The muscle thickness (MTH) was measured by B-mode ultrasound (5 MHz scanning head) at nine sites on the anatomical SM belly. Strong correlations were observed between the site-matched SM mass (total, arm, trunk body, thigh, and lower leg) by MRI measurement and the MTH × height (in m) in the model development group (r=0.83–0.96 in men, r=0.53–0.91 in women, P<0.05). When the SM mass prediction equations were applied to the validation group, significant correlations were also observed between the MRI-measured and predicted SM mass (P<0.05). The predicted total SM mass for the validation group was 19.6 (6.5) kg and was not significantly different from the MRI-measured SM mass of 20.2 (6.5) kg. Bland–Altman analysis did not indicate a bias in prediction of the total SM mass for the validation group (r=0.00, NS). These results suggested that ultrasound-derived prediction equations are a valid method to predict SM mass and an alternative to MRI measurement in healthy Japanese adults.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N34fffc307b5245e5be57945ead71285a
28 Nb2113e4c86dc4adab7fe216e3f43e7fb
29 sg:journal.1319730
30 schema:keywords B-mode ultrasound
31 Bland-Altman analysis
32 Japanese adults
33 Japanese men
34 MRI
35 MRI measurements
36 SM density
37 SM mass
38 SM volume
39 Sm
40 T scanner
41 adults
42 alternative
43 analysis
44 ankle joint
45 area
46 belly
47 bias
48 cervical vertebrae
49 contiguous transverse images
50 correlation
51 cross-sectional area
52 density
53 development group
54 equations
55 first cervical vertebra
56 group
57 healthy Japanese adults
58 height
59 images
60 joints
61 mass
62 mass units
63 measurements
64 men
65 method
66 model development group
67 muscle mass
68 muscle thickness
69 prediction
70 prediction equations
71 present study
72 regional SM mass
73 regional skeletal muscle mass
74 regression-based prediction equations
75 results
76 sequence
77 significant correlation
78 sites
79 skeletal muscle mass
80 slice thickness
81 spin-echo sequence
82 strong correlation
83 study
84 summation
85 thickness
86 total SM mass
87 transverse images
88 ultrasound
89 units
90 valid method
91 validation
92 validation group
93 validity
94 vertebrae
95 volume
96 women
97 years
98 schema:name Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults
99 schema:pagination 24-31
100 schema:productId N18c09b98e10848519688d358070cd280
101 N406688fd78a34ac5b4655ef103645fd9
102 Na4c45c15d8ab4d3e8389a0f4878db95a
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002240691
104 https://doi.org/10.1007/s00421-005-0061-0
105 schema:sdDatePublished 2022-08-04T16:55
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N9f831f627b9443ff90ce6a37edb320f5
108 schema:url https://doi.org/10.1007/s00421-005-0061-0
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N0780294d58674985becc1388c8616885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Magnetic Resonance Angiography
114 rdf:type schema:DefinedTerm
115 N16c944749d5f4008b5c2bb352699cd74 rdf:first sg:person.01051074015.77
116 rdf:rest Nf8058a2c0af44e29849e3722a3a23c92
117 N18c09b98e10848519688d358070cd280 schema:name doi
118 schema:value 10.1007/s00421-005-0061-0
119 rdf:type schema:PropertyValue
120 N2fea204de00147a09dcd62205d92bfe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Muscle, Skeletal
122 rdf:type schema:DefinedTerm
123 N34fffc307b5245e5be57945ead71285a schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 N406688fd78a34ac5b4655ef103645fd9 schema:name dimensions_id
126 schema:value pub.1002240691
127 rdf:type schema:PropertyValue
128 N4898f04640d241adad8c7017e66ad161 rdf:first sg:person.013620221043.16
129 rdf:rest rdf:nil
130 N777385fc7e04447181f8d3b936fac6a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Adult
132 rdf:type schema:DefinedTerm
133 N7a28779fc519482ea90e6dae279825e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Male
135 rdf:type schema:DefinedTerm
136 N8188f7e3980540588921857f8991489b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 N9b1fe81a83a94c099ff6d1f03fde5f18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Japan
141 rdf:type schema:DefinedTerm
142 N9f831f627b9443ff90ce6a37edb320f5 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Na0f16b15cd084b31a91e724010862f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Ultrasonography
146 rdf:type schema:DefinedTerm
147 Na4c45c15d8ab4d3e8389a0f4878db95a schema:name pubmed_id
148 schema:value 16235068
149 rdf:type schema:PropertyValue
150 Nb2113e4c86dc4adab7fe216e3f43e7fb schema:volumeNumber 96
151 rdf:type schema:PublicationVolume
152 Nc90109b3336a4b139f845a25edf64a16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Reproducibility of Results
154 rdf:type schema:DefinedTerm
155 Ncd5019f2a2ad413689856b80b0e0eb76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Humans
157 rdf:type schema:DefinedTerm
158 Ne30d886ed3c4456fa05cda470c8b0ca9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Middle Aged
160 rdf:type schema:DefinedTerm
161 Ne4c9c0bf867a47fabdf26898055b7001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Adolescent
163 rdf:type schema:DefinedTerm
164 Nf8058a2c0af44e29849e3722a3a23c92 rdf:first sg:person.0762567575.13
165 rdf:rest N4898f04640d241adad8c7017e66ad161
166 Nfafcc12e77df406796d49b4999367095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Body Weights and Measures
168 rdf:type schema:DefinedTerm
169 Nfb1e2f50d9bd44e78742f4a755d488bd rdf:first sg:person.01100642414.49
170 rdf:rest N16c944749d5f4008b5c2bb352699cd74
171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
172 schema:name Medical and Health Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
175 schema:name Clinical Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1319730 schema:issn 1432-1025
178 1439-6319
179 schema:name European Journal of Applied Physiology
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.01051074015.77 schema:affiliation grid-institutes:grid.265074.2
183 schema:familyName Kearns
184 schema:givenName Charles F.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051074015.77
186 rdf:type schema:Person
187 sg:person.01100642414.49 schema:affiliation grid-institutes:grid.265074.2
188 schema:familyName Sanada
189 schema:givenName Kiyoshi
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49
191 rdf:type schema:Person
192 sg:person.013620221043.16 schema:affiliation grid-institutes:grid.265074.2
193 schema:familyName Abe
194 schema:givenName Takashi
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620221043.16
196 rdf:type schema:Person
197 sg:person.0762567575.13 schema:affiliation grid-institutes:grid.265074.2
198 schema:familyName Midorikawa
199 schema:givenName Taishi
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762567575.13
201 rdf:type schema:Person
202 sg:pub.10.1007/s00421-003-0961-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046275115
203 https://doi.org/10.1007/s00421-003-0961-9
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00421-003-1034-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740902
206 https://doi.org/10.1007/s00421-003-1034-9
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s004210050394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367687
209 https://doi.org/10.1007/s004210050394
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s004210100468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040400150
212 https://doi.org/10.1007/s004210100468
213 rdf:type schema:CreativeWork
214 sg:pub.10.2165/00007256-198805010-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048158144
215 https://doi.org/10.2165/00007256-198805010-00003
216 rdf:type schema:CreativeWork
217 sg:pub.10.2165/00007256-198805020-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040449838
218 https://doi.org/10.2165/00007256-198805020-00002
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.265074.2 schema:alternateName Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan
221 schema:name Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji, 192-0397, Tokyo, Japan
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...