Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Yanqi Liu, Longlong Xu, Chunfang Song, Huangsen Gu, Wen Ji

ABSTRACT

A quasi-zero stiffness (QZS) isolator is devised to acquire the feature of high-static-low-dynamic stiffness. Cam–roller–nonlinear spring mechanisms, where two horizontal dampers are installed symmetrically, are employed as a negative stiffness provider to connect in parallel with a vertical spring. From the static analysis, the piecewise restoring force in the vertical direction of the system is inferred considering possible separation between the cam and roller. The stiffness characteristics and parameters for offering zero stiffness at the equilibrium position are then determined. The dynamic equation is established and used for the deduction of the amplitude–frequency equation by means of the Harmonic Balance Method. The definitions of force and displacement transmissibility are introduced, and their expressions are derived for subsequent investigations of the effects of horizontal spring’s nonlinearity, excitation amplitude, horizontal damping, and vertical damping on the transmissibility performance. The comparative study is implemented on the isolation performance afforded by the QZS isolator and an equivalent linear counterpart, whose static bearing stiffness is same as the QZS isolator. Results indicate that the system with softening nonlinear horizontal spring can exhibit better performance than that with opposite stiffness spring. With the increase in horizontal damping ratio, the force transmissibility is further suppressed in resonance frequency range but increased in a small segment of higher frequencies and tends to unite in high frequency range. However, the horizontal damper deteriorates the ability to isolate the displacement excitation to a certain extent. Besides, the isolation capability of the QZS system depends on the magnitude of excitation amplitude. The quasi-zero stiffness system possesses lower initial isolation frequency and better isolation ability around resonance frequency compared with the linear system. Therefore, the quasi-zero stiffness isolator has superior low-frequency ability in isolating vibration over its linear counterpart. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00419-019-01541-0

DOI

http://dx.doi.org/10.1007/s00419-019-01541-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113046248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Beijing Key Laboratory of Environment Noise and Vibration, Beijing Municipal Institute of Labor Protection, 100054, Beijing, China", 
            "Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Longlong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Chunfang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Huangsen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Wen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2014.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000597159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002402168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3065-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005379234", 
          "https://doi.org/10.1007/s11071-016-3065-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3065-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005379234", 
          "https://doi.org/10.1007/s11071-016-3065-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2011.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009280198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-2893-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009623313", 
          "https://doi.org/10.1007/s11071-016-2893-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-2893-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009623313", 
          "https://doi.org/10.1007/s11071-016-2893-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2007.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013656623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2008.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016330119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2015.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017905022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2006.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2009.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023005092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2013.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026436483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2013.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032187904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077546313484049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033042625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077546313484049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033042625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038099262", 
          "https://doi.org/10.1007/s11071-016-3188-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-3188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038099262", 
          "https://doi.org/10.1007/s11071-016-3188-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2011.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038959826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2016.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039002390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2016.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043112713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2011.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047906026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2014.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049675010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03027074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051420089", 
          "https://doi.org/10.1007/bf03027074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03027074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051420089", 
          "https://doi.org/10.1007/bf03027074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2016.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052337236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4026888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062152201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4029898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062155183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0263-0923.34.4.459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064575925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0263-0923.34.4.459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064575925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.397-400.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071942619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.257-258.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072063286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/app7070711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090573482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21595/jve.2017.18268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092075622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/6719054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092271586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/icmmse-16.2016.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099131317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/icmmse-16.2016.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099131317"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "A quasi-zero stiffness (QZS) isolator is devised to acquire the feature of high-static-low-dynamic stiffness. Cam\u2013roller\u2013nonlinear spring mechanisms, where two horizontal dampers are installed symmetrically, are employed as a negative stiffness provider to connect in parallel with a vertical spring. From the static analysis, the piecewise restoring force in the vertical direction of the system is inferred considering possible separation between the cam and roller. The stiffness characteristics and parameters for offering zero stiffness at the equilibrium position are then determined. The dynamic equation is established and used for the deduction of the amplitude\u2013frequency equation by means of the Harmonic Balance Method. The definitions of force and displacement transmissibility are introduced, and their expressions are derived for subsequent investigations of the effects of horizontal spring\u2019s nonlinearity, excitation amplitude, horizontal damping, and vertical damping on the transmissibility performance. The comparative study is implemented on the isolation performance afforded by the QZS isolator and an equivalent linear counterpart, whose static bearing stiffness is same as the QZS isolator. Results indicate that the system with softening nonlinear horizontal spring can exhibit better performance than that with opposite stiffness spring. With the increase in horizontal damping ratio, the force transmissibility is further suppressed in resonance frequency range but increased in a small segment of higher frequencies and tends to unite in high frequency range. However, the horizontal damper deteriorates the ability to isolate the displacement excitation to a certain extent. Besides, the isolation capability of the QZS system depends on the magnitude of excitation amplitude. The quasi-zero stiffness system possesses lower initial isolation frequency and better isolation ability around resonance frequency compared with the linear system. Therefore, the quasi-zero stiffness isolator has superior low-frequency ability in isolating vibration over its linear counterpart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00419-019-01541-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042867", 
        "issn": [
          "0939-1533", 
          "1432-0681"
        ], 
        "name": "Archive of Applied Mechanics", 
        "type": "Periodical"
      }
    ], 
    "name": "Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9eb7dcc3a1846e2259e2c8ceb3ef9ff78e41eab2921e9dad527a3284cf3dc83c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00419-019-01541-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113046248"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00419-019-01541-0", 
      "https://app.dimensions.ai/details/publication/pub.1113046248"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78970_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00419-019-01541-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01541-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01541-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01541-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01541-0'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      57 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00419-019-01541-0 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N2e4459ebea29411a8bacb70bbd47193f
4 schema:citation sg:pub.10.1007/bf03027074
5 sg:pub.10.1007/s11071-016-2893-z
6 sg:pub.10.1007/s11071-016-3065-x
7 sg:pub.10.1007/s11071-016-3188-0
8 https://doi.org/10.1016/j.engstruct.2015.04.053
9 https://doi.org/10.1016/j.ijmecsci.2011.11.012
10 https://doi.org/10.1016/j.ijmecsci.2014.03.002
11 https://doi.org/10.1016/j.ijnonlinmec.2011.09.013
12 https://doi.org/10.1016/j.ijnonlinmec.2014.04.011
13 https://doi.org/10.1016/j.jsv.2006.10.011
14 https://doi.org/10.1016/j.jsv.2007.12.019
15 https://doi.org/10.1016/j.jsv.2008.11.034
16 https://doi.org/10.1016/j.jsv.2009.04.015
17 https://doi.org/10.1016/j.jsv.2011.07.039
18 https://doi.org/10.1016/j.jsv.2012.10.037
19 https://doi.org/10.1016/j.jsv.2012.11.001
20 https://doi.org/10.1016/j.jsv.2013.01.034
21 https://doi.org/10.1016/j.jsv.2013.07.016
22 https://doi.org/10.1016/j.jsv.2015.02.005
23 https://doi.org/10.1016/j.jsv.2016.01.042
24 https://doi.org/10.1016/j.jsv.2016.05.029
25 https://doi.org/10.1016/j.ymssp.2016.04.011
26 https://doi.org/10.1016/j.ymssp.2016.09.040
27 https://doi.org/10.1115/1.4026888
28 https://doi.org/10.1115/1.4029898
29 https://doi.org/10.1155/2017/6719054
30 https://doi.org/10.1177/1077546313484049
31 https://doi.org/10.1260/0263-0923.34.4.459
32 https://doi.org/10.21595/jve.2017.18268
33 https://doi.org/10.2991/icmmse-16.2016.66
34 https://doi.org/10.3390/app7070711
35 https://doi.org/10.4028/www.scientific.net/amm.397-400.295
36 https://doi.org/10.4028/www.scientific.net/kem.257-258.231
37 schema:datePublished 2019-03-27
38 schema:datePublishedReg 2019-03-27
39 schema:description A quasi-zero stiffness (QZS) isolator is devised to acquire the feature of high-static-low-dynamic stiffness. Cam–roller–nonlinear spring mechanisms, where two horizontal dampers are installed symmetrically, are employed as a negative stiffness provider to connect in parallel with a vertical spring. From the static analysis, the piecewise restoring force in the vertical direction of the system is inferred considering possible separation between the cam and roller. The stiffness characteristics and parameters for offering zero stiffness at the equilibrium position are then determined. The dynamic equation is established and used for the deduction of the amplitude–frequency equation by means of the Harmonic Balance Method. The definitions of force and displacement transmissibility are introduced, and their expressions are derived for subsequent investigations of the effects of horizontal spring’s nonlinearity, excitation amplitude, horizontal damping, and vertical damping on the transmissibility performance. The comparative study is implemented on the isolation performance afforded by the QZS isolator and an equivalent linear counterpart, whose static bearing stiffness is same as the QZS isolator. Results indicate that the system with softening nonlinear horizontal spring can exhibit better performance than that with opposite stiffness spring. With the increase in horizontal damping ratio, the force transmissibility is further suppressed in resonance frequency range but increased in a small segment of higher frequencies and tends to unite in high frequency range. However, the horizontal damper deteriorates the ability to isolate the displacement excitation to a certain extent. Besides, the isolation capability of the QZS system depends on the magnitude of excitation amplitude. The quasi-zero stiffness system possesses lower initial isolation frequency and better isolation ability around resonance frequency compared with the linear system. Therefore, the quasi-zero stiffness isolator has superior low-frequency ability in isolating vibration over its linear counterpart.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1042867
44 schema:name Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping
45 schema:pagination 1-17
46 schema:productId N90ad87354daa47549e9a43296d48a217
47 Nd0a60e069337441db44f740a7ba08e84
48 Nf3c957d565ff4032a525c482f52103ef
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046248
50 https://doi.org/10.1007/s00419-019-01541-0
51 schema:sdDatePublished 2019-04-11T13:20
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N5ea507a836c848e8bd085d68edb66398
54 schema:url https://link.springer.com/10.1007%2Fs00419-019-01541-0
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1f3819cf4ddb472bb98c80bd315e7955 rdf:first Ne38cf86afc634ad8a53af7e7b1ad59a7
59 rdf:rest Neb5c9807be84400eb8c12dc4ccab1532
60 N2e4459ebea29411a8bacb70bbd47193f rdf:first N37f237c0ad1a4feda6e892edee4731bc
61 rdf:rest Nafa08b012d9044ae8f12816cbbc8956f
62 N37f237c0ad1a4feda6e892edee4731bc schema:affiliation https://www.grid.ac/institutes/grid.258151.a
63 schema:familyName Liu
64 schema:givenName Yanqi
65 rdf:type schema:Person
66 N5ea507a836c848e8bd085d68edb66398 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N7564818929d64bb79da1501a8afea2e1 rdf:first Neb5968b5629e45d692d121fefb458b9c
69 rdf:rest rdf:nil
70 N8481bf1cf11c49c599dc63cff10a7615 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
71 schema:familyName Gu
72 schema:givenName Huangsen
73 rdf:type schema:Person
74 N90ad87354daa47549e9a43296d48a217 schema:name readcube_id
75 schema:value 9eb7dcc3a1846e2259e2c8ceb3ef9ff78e41eab2921e9dad527a3284cf3dc83c
76 rdf:type schema:PropertyValue
77 Nafa08b012d9044ae8f12816cbbc8956f rdf:first Nb53c6cb428c6457db106e7b2bb8589c7
78 rdf:rest N1f3819cf4ddb472bb98c80bd315e7955
79 Nb53c6cb428c6457db106e7b2bb8589c7 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
80 schema:familyName Xu
81 schema:givenName Longlong
82 rdf:type schema:Person
83 Nd0a60e069337441db44f740a7ba08e84 schema:name doi
84 schema:value 10.1007/s00419-019-01541-0
85 rdf:type schema:PropertyValue
86 Ne38cf86afc634ad8a53af7e7b1ad59a7 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
87 schema:familyName Song
88 schema:givenName Chunfang
89 rdf:type schema:Person
90 Neb5968b5629e45d692d121fefb458b9c schema:affiliation https://www.grid.ac/institutes/grid.258151.a
91 schema:familyName Ji
92 schema:givenName Wen
93 rdf:type schema:Person
94 Neb5c9807be84400eb8c12dc4ccab1532 rdf:first N8481bf1cf11c49c599dc63cff10a7615
95 rdf:rest N7564818929d64bb79da1501a8afea2e1
96 Nf3c957d565ff4032a525c482f52103ef schema:name dimensions_id
97 schema:value pub.1113046248
98 rdf:type schema:PropertyValue
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
103 schema:name Electrical and Electronic Engineering
104 rdf:type schema:DefinedTerm
105 sg:journal.1042867 schema:issn 0939-1533
106 1432-0681
107 schema:name Archive of Applied Mechanics
108 rdf:type schema:Periodical
109 sg:pub.10.1007/bf03027074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051420089
110 https://doi.org/10.1007/bf03027074
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11071-016-2893-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009623313
113 https://doi.org/10.1007/s11071-016-2893-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11071-016-3065-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005379234
116 https://doi.org/10.1007/s11071-016-3065-x
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11071-016-3188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038099262
119 https://doi.org/10.1007/s11071-016-3188-0
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.engstruct.2015.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017905022
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijmecsci.2011.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047906026
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijmecsci.2014.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000597159
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijnonlinmec.2011.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009280198
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijnonlinmec.2014.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049675010
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jsv.2006.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587764
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jsv.2007.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717026
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jsv.2008.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016330119
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jsv.2009.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023005092
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jsv.2011.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038959826
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jsv.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002402168
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jsv.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013656623
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jsv.2013.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436483
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jsv.2013.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032187904
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jsv.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340184
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jsv.2016.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043112713
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jsv.2016.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039002390
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ymssp.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031517867
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ymssp.2016.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052337236
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.4026888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062152201
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.4029898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062155183
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1155/2017/6719054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092271586
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1177/1077546313484049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033042625
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1260/0263-0923.34.4.459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064575925
168 rdf:type schema:CreativeWork
169 https://doi.org/10.21595/jve.2017.18268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092075622
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2991/icmmse-16.2016.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099131317
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3390/app7070711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090573482
174 rdf:type schema:CreativeWork
175 https://doi.org/10.4028/www.scientific.net/amm.397-400.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071942619
176 rdf:type schema:CreativeWork
177 https://doi.org/10.4028/www.scientific.net/kem.257-258.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072063286
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
180 schema:name Beijing Key Laboratory of Environment Noise and Vibration, Beijing Municipal Institute of Labor Protection, 100054, Beijing, China
181 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...