Two-phase equilibrium microstructures against optimal composite microstructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Alexander B. Freidin, Leah L. Sharipova

ABSTRACT

We relate two problems which arise from different branches of mechanics of materials: construction of limiting phase transformation surfaces in strain space and stress–strain diagrams for stress-induced phase transitions and optimal design of two-phase 3D composites in the sense of minimizing its energy. In Antimonov et al. (Int J Eng Sci 98:153–182, 2015) for the case of isotropic phases, it was shown that given a new phase volume fraction and depending on average strain, the strain energy of a two-phase linear-elastic composite is minimized by either direct or inclined simple laminates, direct or skew second-rank laminates or third-rank laminates. Then these results were applied for the construction of direct and reverse transformations limiting surfaces in strain space for elastic solids undergoing phase transformations by additional minimization with respect to the new phase volume fraction and finding the strains at which minimizing volume fraction equals zero or one. In the present paper we construct stress–strain diagrams on various straining paths at which a material undergoes the phase transformation. We demonstrate that an additional degree of freedom—new phase volume fraction—may crucially result in instability of two-phase microstructures even if the microstructures are energy minimizers for composites with given volume fractions of phases. This in turn may lead to incompleteness of monotonic phase transformations and broken stress–strain diagrams. We study how such a behavior depends on a loading path and chemical energies of the phases. More... »

PAGES

561-580

References to SciGraph publications

  • 1987-03. Fine phase mixtures as minimizers of energy in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1991-09. The relaxation of a double-well energy in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1986. Modelling the Properties of Composites by Laminates in HOMOGENIZATION AND EFFECTIVE MODULI OF MATERIALS AND MEDIA
  • 2008-03. The Relaxation of Two-well Energies with Possibly Unequal Moduli in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2006-06. On a Model of Heterogenous Deformation of Elastic Bodies by the Mechanism of Multiple Appearance of New Phase Layers in MECCANICA
  • 1997. Microstructures of Composites of Extremal Rigidity and Exact Bounds on the Associated Energy Density in TOPICS IN THE MATHEMATICAL MODELLING OF COMPOSITE MATERIALS
  • 1999-04. On optimal microstructures for a plane shape optimization problem in STRUCTURAL OPTIMIZATION
  • 1989-01. Crazing and shear bands in glassy polymers as layers of a new phase in MECHANICS OF COMPOSITE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00419-019-01510-7

    DOI

    http://dx.doi.org/10.1007/s00419-019-01510-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111649706


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Saint Petersburg State Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.32495.39", 
              "name": [
                "Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint Petersburg, Russia", 
                "Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freidin", 
            "givenName": "Alexander B.", 
            "id": "sg:person.016362021571.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362021571.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Problems of Mechanical Engineering", 
              "id": "https://www.grid.ac/institutes/grid.462405.1", 
              "name": [
                "Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharipova", 
            "givenName": "Leah L.", 
            "id": "sg:person.07551572400.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551572400.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01135336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002562193", 
              "https://doi.org/10.1007/bf01135336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01135336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002562193", 
              "https://doi.org/10.1007/bf01135336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00281246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476771", 
              "https://doi.org/10.1007/bf00281246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00281246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476771", 
              "https://doi.org/10.1007/bf00281246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-007-0075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006502984", 
              "https://doi.org/10.1007/s00205-007-0075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-007-0075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006502984", 
              "https://doi.org/10.1007/s00205-007-0075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijengsci.2008.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006583250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijengsci.2015.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007334373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijengsci.2015.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007334373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijengsci.2015.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007334373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijengsci.2015.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007334373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmps.2006.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007623516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00608444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008157446", 
              "https://doi.org/10.1007/bf00608444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00608444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008157446", 
              "https://doi.org/10.1007/bf00608444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsolstr.2011.05.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014656489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/oca.4660040410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022202290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(88)90094-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023536906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(88)90094-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023536906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.200610305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024521966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01195933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025768003", 
              "https://doi.org/10.1007/bf01195933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01195933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025768003", 
              "https://doi.org/10.1007/bf01195933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5096(96)00018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028233148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-2032-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030245805", 
              "https://doi.org/10.1007/978-1-4612-2032-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-2032-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030245805", 
              "https://doi.org/10.1007/978-1-4612-2032-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11012-005-5901-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041197902", 
              "https://doi.org/10.1007/s11012-005-5901-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8646-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043406762", 
              "https://doi.org/10.1007/978-1-4613-8646-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7683(95)00176-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045462893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511613357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098787583"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "We relate two problems which arise from different branches of mechanics of materials: construction of limiting phase transformation surfaces in strain space and stress\u2013strain diagrams for stress-induced phase transitions and optimal design of two-phase 3D composites in the sense of minimizing its energy. In Antimonov et al. (Int J Eng Sci 98:153\u2013182, 2015) for the case of isotropic phases, it was shown that given a new phase volume fraction and depending on average strain, the strain energy of a two-phase linear-elastic composite is minimized by either direct or inclined simple laminates, direct or skew second-rank laminates or third-rank laminates. Then these results were applied for the construction of direct and reverse transformations limiting surfaces in strain space for elastic solids undergoing phase transformations by additional minimization with respect to the new phase volume fraction and finding the strains at which minimizing volume fraction equals zero or one. In the present paper we construct stress\u2013strain diagrams on various straining paths at which a material undergoes the phase transformation. We demonstrate that an additional degree of freedom\u2014new phase volume fraction\u2014may crucially result in instability of two-phase microstructures even if the microstructures are energy minimizers for composites with given volume fractions of phases. This in turn may lead to incompleteness of monotonic phase transformations and broken stress\u2013strain diagrams. We study how such a behavior depends on a loading path and chemical energies of the phases.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00419-019-01510-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6745771", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042867", 
            "issn": [
              "0939-1533", 
              "1432-0681"
            ], 
            "name": "Archive of Applied Mechanics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "89"
          }
        ], 
        "name": "Two-phase equilibrium microstructures against optimal composite microstructures", 
        "pagination": "561-580", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c4cbea9f6762a81bc10a8524caf5e2ab3aeb7412fb39850a5a2090af593d0a24"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00419-019-01510-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111649706"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00419-019-01510-7", 
          "https://app.dimensions.ai/details/publication/pub.1111649706"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00419-019-01510-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01510-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01510-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01510-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00419-019-01510-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00419-019-01510-7 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N6a2041f660bf481bb85d8cea050efa95
    4 schema:citation sg:pub.10.1007/978-1-4612-2032-9_8
    5 sg:pub.10.1007/978-1-4613-8646-9_7
    6 sg:pub.10.1007/bf00281246
    7 sg:pub.10.1007/bf00608444
    8 sg:pub.10.1007/bf01135336
    9 sg:pub.10.1007/bf01195933
    10 sg:pub.10.1007/s00205-007-0075-3
    11 sg:pub.10.1007/s11012-005-5901-9
    12 https://doi.org/10.1002/oca.4660040410
    13 https://doi.org/10.1002/zamm.200610305
    14 https://doi.org/10.1016/0020-7683(95)00176-x
    15 https://doi.org/10.1016/0021-8928(88)90094-9
    16 https://doi.org/10.1016/0022-5096(96)00018-x
    17 https://doi.org/10.1016/j.ijengsci.2008.09.015
    18 https://doi.org/10.1016/j.ijengsci.2015.10.004
    19 https://doi.org/10.1016/j.ijsolstr.2011.05.024
    20 https://doi.org/10.1016/j.jmps.2006.12.003
    21 https://doi.org/10.1017/cbo9780511613357
    22 schema:datePublished 2019-03
    23 schema:datePublishedReg 2019-03-01
    24 schema:description We relate two problems which arise from different branches of mechanics of materials: construction of limiting phase transformation surfaces in strain space and stress–strain diagrams for stress-induced phase transitions and optimal design of two-phase 3D composites in the sense of minimizing its energy. In Antimonov et al. (Int J Eng Sci 98:153–182, 2015) for the case of isotropic phases, it was shown that given a new phase volume fraction and depending on average strain, the strain energy of a two-phase linear-elastic composite is minimized by either direct or inclined simple laminates, direct or skew second-rank laminates or third-rank laminates. Then these results were applied for the construction of direct and reverse transformations limiting surfaces in strain space for elastic solids undergoing phase transformations by additional minimization with respect to the new phase volume fraction and finding the strains at which minimizing volume fraction equals zero or one. In the present paper we construct stress–strain diagrams on various straining paths at which a material undergoes the phase transformation. We demonstrate that an additional degree of freedom—new phase volume fraction—may crucially result in instability of two-phase microstructures even if the microstructures are energy minimizers for composites with given volume fractions of phases. This in turn may lead to incompleteness of monotonic phase transformations and broken stress–strain diagrams. We study how such a behavior depends on a loading path and chemical energies of the phases.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N6612578ccc944626b414a4d484d0d173
    29 Nadd22355e2cb4378aefb056ec7f420cd
    30 sg:journal.1042867
    31 schema:name Two-phase equilibrium microstructures against optimal composite microstructures
    32 schema:pagination 561-580
    33 schema:productId N3aef732a57694b07980698c9c451cf39
    34 N59b328a1415b481bbe9ef823cc9e5613
    35 Nb816f213efc246cbb1974593c59227f0
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111649706
    37 https://doi.org/10.1007/s00419-019-01510-7
    38 schema:sdDatePublished 2019-04-11T12:16
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N83802c5b587d47e99b8b8a903403c903
    41 schema:url https://link.springer.com/10.1007%2Fs00419-019-01510-7
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N3aef732a57694b07980698c9c451cf39 schema:name dimensions_id
    46 schema:value pub.1111649706
    47 rdf:type schema:PropertyValue
    48 N59b328a1415b481bbe9ef823cc9e5613 schema:name readcube_id
    49 schema:value c4cbea9f6762a81bc10a8524caf5e2ab3aeb7412fb39850a5a2090af593d0a24
    50 rdf:type schema:PropertyValue
    51 N6612578ccc944626b414a4d484d0d173 schema:volumeNumber 89
    52 rdf:type schema:PublicationVolume
    53 N6a2041f660bf481bb85d8cea050efa95 rdf:first sg:person.016362021571.23
    54 rdf:rest Nd2242110b5d741f3831511cbcdc05c34
    55 N83802c5b587d47e99b8b8a903403c903 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Nadd22355e2cb4378aefb056ec7f420cd schema:issueNumber 3
    58 rdf:type schema:PublicationIssue
    59 Nb816f213efc246cbb1974593c59227f0 schema:name doi
    60 schema:value 10.1007/s00419-019-01510-7
    61 rdf:type schema:PropertyValue
    62 Nd2242110b5d741f3831511cbcdc05c34 rdf:first sg:person.07551572400.91
    63 rdf:rest rdf:nil
    64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Engineering
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Materials Engineering
    69 rdf:type schema:DefinedTerm
    70 sg:grant.6745771 http://pending.schema.org/fundedItem sg:pub.10.1007/s00419-019-01510-7
    71 rdf:type schema:MonetaryGrant
    72 sg:journal.1042867 schema:issn 0939-1533
    73 1432-0681
    74 schema:name Archive of Applied Mechanics
    75 rdf:type schema:Periodical
    76 sg:person.016362021571.23 schema:affiliation https://www.grid.ac/institutes/grid.32495.39
    77 schema:familyName Freidin
    78 schema:givenName Alexander B.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362021571.23
    80 rdf:type schema:Person
    81 sg:person.07551572400.91 schema:affiliation https://www.grid.ac/institutes/grid.462405.1
    82 schema:familyName Sharipova
    83 schema:givenName Leah L.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551572400.91
    85 rdf:type schema:Person
    86 sg:pub.10.1007/978-1-4612-2032-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030245805
    87 https://doi.org/10.1007/978-1-4612-2032-9_8
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-1-4613-8646-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043406762
    90 https://doi.org/10.1007/978-1-4613-8646-9_7
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf00281246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476771
    93 https://doi.org/10.1007/bf00281246
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf00608444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008157446
    96 https://doi.org/10.1007/bf00608444
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01135336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002562193
    99 https://doi.org/10.1007/bf01135336
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01195933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025768003
    102 https://doi.org/10.1007/bf01195933
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s00205-007-0075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006502984
    105 https://doi.org/10.1007/s00205-007-0075-3
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s11012-005-5901-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041197902
    108 https://doi.org/10.1007/s11012-005-5901-9
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/oca.4660040410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202290
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/zamm.200610305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024521966
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0020-7683(95)00176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045462893
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0021-8928(88)90094-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023536906
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0022-5096(96)00018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028233148
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.ijengsci.2008.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006583250
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.ijengsci.2015.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007334373
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.ijsolstr.2011.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014656489
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jmps.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007623516
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1017/cbo9780511613357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787583
    129 rdf:type schema:CreativeWork
    130 https://www.grid.ac/institutes/grid.32495.39 schema:alternateName Saint Petersburg State Polytechnical University
    131 schema:name Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint Petersburg, Russia
    132 Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.462405.1 schema:alternateName Institute of Problems of Mechanical Engineering
    135 schema:name Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint Petersburg, Russia
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...