Modified Monte Carlo method for buckling analysis of nonlinear imperfect structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

I. Elishakoff, E. Archaud

ABSTRACT

In this paper, we propose a modified Monte Carlo method for analysis of buckling of an imperfect beams on softening nonlinear elastic foundation. Such structures exhibit considerable imperfection sensitivity, i.e. reduction in the maximum load that the structure is able to support in contrast to classical buckling load of the perfect structure. The initial imperfections are treated as random functions of axial coordinate. In order to reduce the needed number of simulations, the Monte Carlo method is coupled with maximum likelihood methodology and the Kolmogorov–Smirnov test. More... »

PAGES

1327-1339

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00419-013-0749-2

DOI

http://dx.doi.org/10.1007/s00419-013-0749-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030159410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Department of Ocean and Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elishakoff", 
        "givenName": "I.", 
        "id": "sg:person.07413722043.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sigma Clermont", 
          "id": "https://www.grid.ac/institutes/grid.466323.6", 
          "name": [
            "Department Structures and Material Mechanics, Institut Fran\u00e7ais de M\u00e9canique Avanc\u00e9e, 63175, Aubi\u00e8re Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archaud", 
        "givenName": "E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0263-8231(93)90022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004174375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8231(93)90022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004174375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-005-0434-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006575199", 
          "https://doi.org/10.1007/s00419-005-0434-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2012.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007736033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(91)90070-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019686716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(91)90070-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019686716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65073-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020567875", 
          "https://doi.org/10.1007/978-3-642-65073-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(96)00046-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023885263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50992-6_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025676012", 
          "https://doi.org/10.1007/978-3-642-50992-6_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1922.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026060855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sapm197049145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026172124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(70)90067-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033777202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(70)90067-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033777202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(95)00065-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037364423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4831-9821-7.50010-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042766920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/8.10833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045858963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1951.10500769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/99755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059349762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2900971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062092300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3424564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062120609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3564613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062131278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.382337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062333632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511529658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098971165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "In this paper, we propose a modified Monte Carlo method for analysis of buckling of an imperfect beams on softening nonlinear elastic foundation. Such structures exhibit considerable imperfection sensitivity, i.e. reduction in the maximum load that the structure is able to support in contrast to classical buckling load of the perfect structure. The initial imperfections are treated as random functions of axial coordinate. In order to reduce the needed number of simulations, the Monte Carlo method is coupled with maximum likelihood methodology and the Kolmogorov\u2013Smirnov test.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00419-013-0749-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042867", 
        "issn": [
          "0939-1533", 
          "1432-0681"
        ], 
        "name": "Archive of Applied Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "Modified Monte Carlo method for buckling analysis of nonlinear imperfect structures", 
    "pagination": "1327-1339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fad3c12b91cae9ee4d42e1db02e43ee040119bef6a29f2fe08c36814cbfacba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00419-013-0749-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030159410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00419-013-0749-2", 
      "https://app.dimensions.ai/details/publication/pub.1030159410"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00419-013-0749-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00419-013-0749-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00419-013-0749-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00419-013-0749-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00419-013-0749-2'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00419-013-0749-2 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N22d5723517b440789378f34d62996f7b
4 schema:citation sg:pub.10.1007/978-3-642-50992-6_16
5 sg:pub.10.1007/978-3-642-65073-4_3
6 sg:pub.10.1007/s00419-005-0434-1
7 https://doi.org/10.1002/sapm197049145
8 https://doi.org/10.1016/0020-7403(91)90070-j
9 https://doi.org/10.1016/0020-7462(95)00065-8
10 https://doi.org/10.1016/0020-7683(70)90067-3
11 https://doi.org/10.1016/0263-8231(93)90022-3
12 https://doi.org/10.1016/b978-1-4831-9821-7.50010-7
13 https://doi.org/10.1016/j.ijmecsci.2012.06.010
14 https://doi.org/10.1016/s0020-7683(96)00046-7
15 https://doi.org/10.1017/cbo9780511529658
16 https://doi.org/10.1080/01621459.1951.10500769
17 https://doi.org/10.1090/qam/99755
18 https://doi.org/10.1098/rsta.1922.0009
19 https://doi.org/10.1115/1.2900971
20 https://doi.org/10.1115/1.3424564
21 https://doi.org/10.1115/1.3564613
22 https://doi.org/10.1121/1.382337
23 https://doi.org/10.1142/p191
24 https://doi.org/10.2514/8.10833
25 schema:datePublished 2013-09
26 schema:datePublishedReg 2013-09-01
27 schema:description In this paper, we propose a modified Monte Carlo method for analysis of buckling of an imperfect beams on softening nonlinear elastic foundation. Such structures exhibit considerable imperfection sensitivity, i.e. reduction in the maximum load that the structure is able to support in contrast to classical buckling load of the perfect structure. The initial imperfections are treated as random functions of axial coordinate. In order to reduce the needed number of simulations, the Monte Carlo method is coupled with maximum likelihood methodology and the Kolmogorov–Smirnov test.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N3bbcdc44e1634b3fbb0eb679c9fe5b56
32 N83f6885cc3fe41d181917feeb73e2b18
33 sg:journal.1042867
34 schema:name Modified Monte Carlo method for buckling analysis of nonlinear imperfect structures
35 schema:pagination 1327-1339
36 schema:productId N26720a8af0bf4790adfeedfe6f20e290
37 N492de4af519c46b0bdd6d6fb8b533295
38 Nf1dea290128b4c72ba65936d206e0126
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030159410
40 https://doi.org/10.1007/s00419-013-0749-2
41 schema:sdDatePublished 2019-04-10T20:47
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N80bb5a136a4c45728464b2f441cddb42
44 schema:url http://link.springer.com/10.1007%2Fs00419-013-0749-2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N095f1ad0330a4361b1655a42558c022d schema:affiliation https://www.grid.ac/institutes/grid.466323.6
49 schema:familyName Archaud
50 schema:givenName E.
51 rdf:type schema:Person
52 N22d5723517b440789378f34d62996f7b rdf:first sg:person.07413722043.13
53 rdf:rest Nb64928b5cb364eb3a752327a750dc79f
54 N26720a8af0bf4790adfeedfe6f20e290 schema:name dimensions_id
55 schema:value pub.1030159410
56 rdf:type schema:PropertyValue
57 N3bbcdc44e1634b3fbb0eb679c9fe5b56 schema:issueNumber 9
58 rdf:type schema:PublicationIssue
59 N492de4af519c46b0bdd6d6fb8b533295 schema:name readcube_id
60 schema:value 8fad3c12b91cae9ee4d42e1db02e43ee040119bef6a29f2fe08c36814cbfacba
61 rdf:type schema:PropertyValue
62 N80bb5a136a4c45728464b2f441cddb42 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N83f6885cc3fe41d181917feeb73e2b18 schema:volumeNumber 83
65 rdf:type schema:PublicationVolume
66 Nb64928b5cb364eb3a752327a750dc79f rdf:first N095f1ad0330a4361b1655a42558c022d
67 rdf:rest rdf:nil
68 Nf1dea290128b4c72ba65936d206e0126 schema:name doi
69 schema:value 10.1007/s00419-013-0749-2
70 rdf:type schema:PropertyValue
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
75 schema:name Civil Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1042867 schema:issn 0939-1533
78 1432-0681
79 schema:name Archive of Applied Mechanics
80 rdf:type schema:Periodical
81 sg:person.07413722043.13 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
82 schema:familyName Elishakoff
83 schema:givenName I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13
85 rdf:type schema:Person
86 sg:pub.10.1007/978-3-642-50992-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025676012
87 https://doi.org/10.1007/978-3-642-50992-6_16
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-642-65073-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020567875
90 https://doi.org/10.1007/978-3-642-65073-4_3
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00419-005-0434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006575199
93 https://doi.org/10.1007/s00419-005-0434-1
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/sapm197049145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026172124
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0020-7403(91)90070-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1019686716
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0020-7462(95)00065-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037364423
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0020-7683(70)90067-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033777202
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0263-8231(93)90022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004174375
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/b978-1-4831-9821-7.50010-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042766920
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ijmecsci.2012.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007736033
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0020-7683(96)00046-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023885263
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/cbo9780511529658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668642
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/01621459.1951.10500769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298962
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1090/qam/99755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059349762
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1098/rsta.1922.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026060855
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1115/1.2900971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062092300
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1115/1.3424564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062120609
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1115/1.3564613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062131278
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1121/1.382337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062333632
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1142/p191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098971165
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2514/8.10833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045858963
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
132 schema:name Department of Ocean and Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.466323.6 schema:alternateName Sigma Clermont
135 schema:name Department Structures and Material Mechanics, Institut Français de Mécanique Avancée, 63175, Aubière Cedex, France
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...