Chaotic vibrations of spherical and conical axially symmetric shells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

V.A. Krysko, J. Awrejcewicz, T.V. Shchekaturova

ABSTRACT

Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially symmetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitable to solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook’s principle holds. Inertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition from PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge–Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed. More... »

PAGES

338-358

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00419-004-0356-3

DOI

http://dx.doi.org/10.1007/s00419-004-0356-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007034670


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V.A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90\u2013924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90\u2013924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchekaturova", 
        "givenName": "T.V.", 
        "id": "sg:person.011647256643.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647256643.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1011133223520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170452", 
          "https://doi.org/10.1023/a:1011133223520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02730340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257030", 
          "https://doi.org/10.1007/bf02730340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-55677-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052347846", 
          "https://doi.org/10.1007/978-3-642-55677-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02748874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004074480", 
          "https://doi.org/10.1007/bf02748874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-003-0303-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000050335", 
          "https://doi.org/10.1007/s00419-003-0303-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01107909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048384192", 
          "https://doi.org/10.1007/bf01107909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024458814785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020728380", 
          "https://doi.org/10.1023/a:1024458814785"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially symmetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitable to solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook\u2019s principle holds. Inertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition from PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge\u2013Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00419-004-0356-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042867", 
        "issn": [
          "0939-1533", 
          "1432-0681"
        ], 
        "name": "Archive of Applied Mechanics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "chaotic vibrations", 
      "Runge-Kutta method", 
      "fourth-order Runge\u2013Kutta method", 
      "symmetric shell", 
      "differential equations", 
      "Cauchy problem", 
      "variational equations", 
      "dynamical problems", 
      "chaotic dynamics", 
      "nonlinear dynamics", 
      "variational principle", 
      "rotation inertia", 
      "control parameters", 
      "Ritz procedure", 
      "direction tangent", 
      "equations", 
      "transversal load", 
      "shell theory", 
      "quantitative theory", 
      "problem", 
      "PDE", 
      "theory", 
      "ODEs", 
      "dynamics", 
      "deterministic", 
      "principles", 
      "vibration", 
      "inertial forces", 
      "shell cross sections", 
      "tangent", 
      "parameters", 
      "inertia", 
      "hybrid type", 
      "new scenario", 
      "scenarios", 
      "procedure", 
      "shell surface", 
      "load", 
      "quantitative analysis", 
      "analysis", 
      "frame", 
      "force", 
      "cross sections", 
      "shell", 
      "types", 
      "observations", 
      "transition", 
      "sections", 
      "development", 
      "surface", 
      "shell material", 
      "materials", 
      "paper", 
      "method", 
      "conical axially symmetric shells", 
      "axially symmetric shells", 
      "sign-changing transversal load", 
      "Hook\u2019s principle", 
      "normal shell cross section"
    ], 
    "name": "Chaotic vibrations of spherical and conical axially symmetric shells", 
    "pagination": "338-358", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007034670"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00419-004-0356-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00419-004-0356-3", 
      "https://app.dimensions.ai/details/publication/pub.1007034670"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00419-004-0356-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00419-004-0356-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00419-004-0356-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00419-004-0356-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00419-004-0356-3'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      22 PREDICATES      92 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00419-004-0356-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N134374a544884adca84477f1554fee97
4 schema:citation sg:pub.10.1007/978-3-642-55677-7
5 sg:pub.10.1007/bf01107909
6 sg:pub.10.1007/bf02730340
7 sg:pub.10.1007/bf02748874
8 sg:pub.10.1007/s00419-003-0303-8
9 sg:pub.10.1023/a:1011133223520
10 sg:pub.10.1023/a:1024458814785
11 schema:datePublished 2005-03
12 schema:datePublishedReg 2005-03-01
13 schema:description Chaotic vibrations of deterministic, geometrically nonlinear, elastic, spherical and conical axially symmetric shells, subject to sign-changing transversal load using the variational principle, are analysed. The paper is motivated by an observation that variational equations of the hybrid type are suitable to solve many dynamical problems of the shells theory. It is assumed that the shell material is isotropic, and the Hook’s principle holds. Inertial forces in directions tangent to mean shell surface and rotation inertia of a normal shell cross section are neglected. A transition from PDEs to ODEs (the Cauchy problem) is realized through the Ritz procedure. Next, the Cauchy problem is solved using the fourth-order Runge–Kutta method. Qualitative and quantitative analysis is carried out in the frame of both nonlinear dynamics and quantitative theory of differential equations. New scenarios from harmonic to chaotic dynamics are detected. Various vibration forms development versus control parameters (rise of arc; amplitude and frequency of the exciting force and number of vibrational modes accounted) are illustrated and discussed.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N17e9a27a4cb147a2958b1f4b47fcfe0e
18 N281947045b6446469760eb641fca62a2
19 sg:journal.1042867
20 schema:keywords Cauchy problem
21 Hook’s principle
22 ODEs
23 PDE
24 Ritz procedure
25 Runge-Kutta method
26 analysis
27 axially symmetric shells
28 chaotic dynamics
29 chaotic vibrations
30 conical axially symmetric shells
31 control parameters
32 cross sections
33 deterministic
34 development
35 differential equations
36 direction tangent
37 dynamical problems
38 dynamics
39 equations
40 force
41 fourth-order Runge–Kutta method
42 frame
43 hybrid type
44 inertia
45 inertial forces
46 load
47 materials
48 method
49 new scenario
50 nonlinear dynamics
51 normal shell cross section
52 observations
53 paper
54 parameters
55 principles
56 problem
57 procedure
58 quantitative analysis
59 quantitative theory
60 rotation inertia
61 scenarios
62 sections
63 shell
64 shell cross sections
65 shell material
66 shell surface
67 shell theory
68 sign-changing transversal load
69 surface
70 symmetric shell
71 tangent
72 theory
73 transition
74 transversal load
75 types
76 variational equations
77 variational principle
78 vibration
79 schema:name Chaotic vibrations of spherical and conical axially symmetric shells
80 schema:pagination 338-358
81 schema:productId N697893d24b1841e1971b782691f1c4da
82 Nf4bbb7c249d34332a79a2005f9c95996
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007034670
84 https://doi.org/10.1007/s00419-004-0356-3
85 schema:sdDatePublished 2021-12-01T19:17
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Ne5ac19a5434a4e6297522046ab88aa0b
88 schema:url https://doi.org/10.1007/s00419-004-0356-3
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N134374a544884adca84477f1554fee97 rdf:first sg:person.015167266033.92
93 rdf:rest N5e0d3fc44fcc4725add9a5975f8f05a0
94 N17e9a27a4cb147a2958b1f4b47fcfe0e schema:volumeNumber 74
95 rdf:type schema:PublicationVolume
96 N281947045b6446469760eb641fca62a2 schema:issueNumber 5-6
97 rdf:type schema:PublicationIssue
98 N5e0d3fc44fcc4725add9a5975f8f05a0 rdf:first sg:person.012103132446.89
99 rdf:rest N9746688b6d774b15ac01d577e99d1024
100 N697893d24b1841e1971b782691f1c4da schema:name doi
101 schema:value 10.1007/s00419-004-0356-3
102 rdf:type schema:PropertyValue
103 N9746688b6d774b15ac01d577e99d1024 rdf:first sg:person.011647256643.73
104 rdf:rest rdf:nil
105 Ne5ac19a5434a4e6297522046ab88aa0b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nf4bbb7c249d34332a79a2005f9c95996 schema:name dimensions_id
108 schema:value pub.1007034670
109 rdf:type schema:PropertyValue
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
114 schema:name Pure Mathematics
115 rdf:type schema:DefinedTerm
116 sg:journal.1042867 schema:issn 0939-1533
117 1432-0681
118 schema:name Archive of Applied Mechanics
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.011647256643.73 schema:affiliation grid-institutes:grid.446088.6
122 schema:familyName Shchekaturova
123 schema:givenName T.V.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011647256643.73
125 rdf:type schema:Person
126 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
127 schema:familyName Awrejcewicz
128 schema:givenName J.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
130 rdf:type schema:Person
131 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.446088.6
132 schema:familyName Krysko
133 schema:givenName V.A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
135 rdf:type schema:Person
136 sg:pub.10.1007/978-3-642-55677-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052347846
137 https://doi.org/10.1007/978-3-642-55677-7
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf01107909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384192
140 https://doi.org/10.1007/bf01107909
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02730340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257030
143 https://doi.org/10.1007/bf02730340
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf02748874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004074480
146 https://doi.org/10.1007/bf02748874
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00419-003-0303-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000050335
149 https://doi.org/10.1007/s00419-003-0303-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1011133223520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170452
152 https://doi.org/10.1023/a:1011133223520
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/a:1024458814785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728380
155 https://doi.org/10.1023/a:1024458814785
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.412284.9 schema:alternateName Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90–924, Lodz, Poland
158 schema:name Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowskiego St., 90–924, Lodz, Poland
159 rdf:type schema:Organization
160 grid-institutes:grid.446088.6 schema:alternateName Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia
161 schema:name Department of Mathematics, Saratov State University, B. Sadovaya, 96 a, fl. 77, 410054, Saratov, Russia
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...