The influence of visual field position induced by a retinal prosthesis simulator on mobility View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-30

AUTHORS

Takao Endo, Kenta Hozumi, Masakazu Hirota, Hiroyuki Kanda, Takeshi Morimoto, Kohji Nishida, Takashi Fujikado

ABSTRACT

PurposeOur aim is to develop a new generation of suprachoroidal–transretinal stimulation (STS) retinal prosthesis using a dual-stimulating electrode array to enlarge the visual field. In the present study, we aimed to examine how position and size of the visual field—created by a retinal prosthesis simulator—influenced mobility.MethodsTwelve healthy subjects wore retinal prosthesis simulators. Images captured by a web camera attached to a head-mounted display (HMD) were processed by a computer and displayed on the HMD. Three types of artificial visual fields—designed to imitate phosphenes—obtained by a single (5 × 5 electrodes; visual angle, 15°) or dual (5 × 5 electrodes ×2; visual angle, 30°) electrode array were created. Visual field (VF)1 is an inferior visual field, which corresponds to a dual-electrode array implanted in the superior hemisphere. VF2 is a superior visual field, which corresponds to a single-electrode array implanted in the inferior hemisphere. VF3 is a superior visual field, which corresponds to a dual-electrode array implanted in the inferior hemisphere. In each type of artificial visual field, a natural circular visual field (visual angle, 5°) which imitated the vision of patients with advanced retinitis pigmentosa existed at the center. Subjects were instructed to walk along a black carpet (6 m long × 2.2 m wide) without stepping on attached white circular obstacles. Each obstacle was 20 cm in diameter, and obstacles were installed at 40-cm intervals. We measured the number of footsteps on the obstacles, the time taken to complete the obstacle course, and the extent of head movement to scan the area (head-scanning). We then compared the results recorded from these 3 types of artificial visual field.ResultsThe number of footsteps on obstacles was lowest in VF3 (One-way ANOVA; P = 0.028, Fisher’s LSD; VF 1 versus 3 P = 0.039, 2 versus 3 P = 0.012). No significant difference was observed for the time to complete the obstacle course or the extent of head movement between the 3 visual fields.ConclusionThe superior and wide visual field (VF3) obtained by the retinal prosthesis simulator resulted in better mobility performance than the other visual fields. More... »

PAGES

1765-1770

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00417-019-04375-2

DOI

http://dx.doi.org/10.1007/s00417-019-04375-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1116014115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31147839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Stimulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials, Visual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microelectrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retina", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retinitis Pigmentosa", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Acuity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Fields", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Prosthesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Endo", 
        "givenName": "Takao", 
        "id": "sg:person.0753572131.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753572131.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hozumi", 
        "givenName": "Kenta", 
        "id": "sg:person.01106506104.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106506104.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirota", 
        "givenName": "Masakazu", 
        "id": "sg:person.01362747631.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362747631.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanda", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01172247246.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172247246.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morimoto", 
        "givenName": "Takeshi", 
        "id": "sg:person.011273662612.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishida", 
        "givenName": "Kohji", 
        "id": "sg:person.0724263351.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263351.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujikado", 
        "givenName": "Takashi", 
        "id": "sg:person.01144774727.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144774727.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00221-008-1335-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042793198", 
          "https://doi.org/10.1007/s00221-008-1335-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-30", 
    "datePublishedReg": "2019-05-30", 
    "description": "PurposeOur aim is to develop a new generation of suprachoroidal\u2013transretinal stimulation (STS) retinal prosthesis using a dual-stimulating electrode array to enlarge the visual field. In the present study, we aimed to examine how position and size of the visual field\u2014created by a retinal prosthesis simulator\u2014influenced mobility.MethodsTwelve healthy subjects wore retinal prosthesis simulators. Images captured by a web camera attached to a head-mounted display (HMD) were processed by a computer and displayed on the HMD. Three types of artificial visual fields\u2014designed to imitate phosphenes\u2014obtained by a single (5\u2009\u00d7\u20095 electrodes; visual angle, 15\u00b0) or dual (5\u2009\u00d7\u20095 electrodes \u00d72; visual angle, 30\u00b0) electrode array were created. Visual field (VF)1 is an inferior visual field, which corresponds to a dual-electrode array implanted in the superior hemisphere. VF2 is a superior visual field, which corresponds to a single-electrode array implanted in the inferior hemisphere. VF3 is a superior visual field, which corresponds to a dual-electrode array implanted in the inferior hemisphere. In each type of artificial visual field, a natural circular visual field (visual angle, 5\u00b0) which imitated the vision of patients with advanced retinitis pigmentosa existed at the center. Subjects were instructed to walk along a black carpet (6\u00a0m long\u2009\u00d7\u20092.2\u00a0m wide) without stepping on attached white circular obstacles. Each obstacle was 20\u00a0cm in diameter, and obstacles were installed at 40-cm intervals. We measured the number of footsteps on the obstacles, the time taken to complete the obstacle course, and the extent of head movement to scan the area (head-scanning). We then compared the results recorded from these 3 types of artificial visual field.ResultsThe number of footsteps on obstacles was lowest in VF3 (One-way ANOVA; P\u2009=\u20090.028, Fisher\u2019s LSD; VF 1 versus 3 P\u2009=\u20090.039, 2 versus 3 P\u2009=\u20090.012). No significant difference was observed for the time to complete the obstacle course or the extent of head movement between the 3 visual fields.ConclusionThe superior and wide visual field (VF3) obtained by the retinal prosthesis simulator resulted in better mobility performance than the other visual fields.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00417-019-04375-2", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5905967", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1358101", 
        "issn": [
          "0941-2921", 
          "1435-702X"
        ], 
        "name": "Graefe's Archive for Clinical and Experimental Ophthalmology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "257"
      }
    ], 
    "keywords": [
      "superior visual field", 
      "visual field", 
      "inferior hemisphere", 
      "prosthesis simulator", 
      "MethodsTwelve healthy subjects", 
      "advanced retinitis pigmentosa", 
      "inferior visual field", 
      "number of footsteps", 
      "vision of patients", 
      "single-electrode array", 
      "superior hemisphere", 
      "healthy subjects", 
      "head movements", 
      "PurposeOur aim", 
      "visual field position", 
      "retinitis pigmentosa", 
      "wide visual field", 
      "significant differences", 
      "obstacle course", 
      "retinal prosthesis", 
      "present study", 
      "electrode array", 
      "subjects", 
      "patients", 
      "mobility performance", 
      "pigmentosa", 
      "course", 
      "hemisphere", 
      "head-mounted display", 
      "prosthesis", 
      "aim", 
      "interval", 
      "extent", 
      "types", 
      "differences", 
      "center", 
      "study", 
      "number", 
      "good mobility performance", 
      "time", 
      "movement", 
      "field position", 
      "vision", 
      "obstacles", 
      "diameter", 
      "area", 
      "results", 
      "new generation", 
      "position", 
      "mobility", 
      "size", 
      "influence", 
      "generation", 
      "carpet", 
      "images", 
      "array", 
      "display", 
      "field", 
      "web camera", 
      "footsteps", 
      "simulator", 
      "performance", 
      "VF2", 
      "VF3", 
      "computer", 
      "camera", 
      "circular obstacle"
    ], 
    "name": "The influence of visual field position induced by a retinal prosthesis simulator on mobility", 
    "pagination": "1765-1770", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1116014115"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00417-019-04375-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31147839"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00417-019-04375-2", 
      "https://app.dimensions.ai/details/publication/pub.1116014115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_834.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00417-019-04375-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00417-019-04375-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00417-019-04375-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00417-019-04375-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00417-019-04375-2'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      106 URIs      97 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00417-019-04375-2 schema:about N38d05bb0c3d142d8a3995f00c7a9ae69
2 N522ebfaf2dd549d795cf3d6713f92aee
3 N9200fd0dfde6493dbc4b55cb45cb92f0
4 N9978afe2757e47169a120e5ae0f45084
5 N9f631986e607486da887edf80dc2a936
6 Na39a1b9cadc54598837d63201a653e42
7 Na4ee96fddba44cd68172ff664eb0df5c
8 Nc566507d95594bfdb26945cae68065f8
9 Ndf9c9de7fe5c4552bbaed31dd7ef35a8
10 Ne5a57395bf8743cfa6febb5f7ec7b189
11 Nef1b66469f7d45d09f4c77609f44e159
12 Nf1933179375144858cc34fea3f01b9e6
13 Nf1cad18b3ac54835a180f4b787b31625
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author N40bcb4a8b2c14463ad90094626e587aa
17 schema:citation sg:pub.10.1007/s00221-008-1335-7
18 schema:datePublished 2019-05-30
19 schema:datePublishedReg 2019-05-30
20 schema:description PurposeOur aim is to develop a new generation of suprachoroidal–transretinal stimulation (STS) retinal prosthesis using a dual-stimulating electrode array to enlarge the visual field. In the present study, we aimed to examine how position and size of the visual field—created by a retinal prosthesis simulator—influenced mobility.MethodsTwelve healthy subjects wore retinal prosthesis simulators. Images captured by a web camera attached to a head-mounted display (HMD) were processed by a computer and displayed on the HMD. Three types of artificial visual fields—designed to imitate phosphenes—obtained by a single (5 × 5 electrodes; visual angle, 15°) or dual (5 × 5 electrodes ×2; visual angle, 30°) electrode array were created. Visual field (VF)1 is an inferior visual field, which corresponds to a dual-electrode array implanted in the superior hemisphere. VF2 is a superior visual field, which corresponds to a single-electrode array implanted in the inferior hemisphere. VF3 is a superior visual field, which corresponds to a dual-electrode array implanted in the inferior hemisphere. In each type of artificial visual field, a natural circular visual field (visual angle, 5°) which imitated the vision of patients with advanced retinitis pigmentosa existed at the center. Subjects were instructed to walk along a black carpet (6 m long × 2.2 m wide) without stepping on attached white circular obstacles. Each obstacle was 20 cm in diameter, and obstacles were installed at 40-cm intervals. We measured the number of footsteps on the obstacles, the time taken to complete the obstacle course, and the extent of head movement to scan the area (head-scanning). We then compared the results recorded from these 3 types of artificial visual field.ResultsThe number of footsteps on obstacles was lowest in VF3 (One-way ANOVA; P = 0.028, Fisher’s LSD; VF 1 versus 3 P = 0.039, 2 versus 3 P = 0.012). No significant difference was observed for the time to complete the obstacle course or the extent of head movement between the 3 visual fields.ConclusionThe superior and wide visual field (VF3) obtained by the retinal prosthesis simulator resulted in better mobility performance than the other visual fields.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N2ec5d8d3b9f84fcea65b41c88ce79683
24 N3d69bf88bb684792869a913462da271c
25 sg:journal.1358101
26 schema:keywords MethodsTwelve healthy subjects
27 PurposeOur aim
28 VF2
29 VF3
30 advanced retinitis pigmentosa
31 aim
32 area
33 array
34 camera
35 carpet
36 center
37 circular obstacle
38 computer
39 course
40 diameter
41 differences
42 display
43 electrode array
44 extent
45 field
46 field position
47 footsteps
48 generation
49 good mobility performance
50 head movements
51 head-mounted display
52 healthy subjects
53 hemisphere
54 images
55 inferior hemisphere
56 inferior visual field
57 influence
58 interval
59 mobility
60 mobility performance
61 movement
62 new generation
63 number
64 number of footsteps
65 obstacle course
66 obstacles
67 patients
68 performance
69 pigmentosa
70 position
71 present study
72 prosthesis
73 prosthesis simulator
74 results
75 retinal prosthesis
76 retinitis pigmentosa
77 significant differences
78 simulator
79 single-electrode array
80 size
81 study
82 subjects
83 superior hemisphere
84 superior visual field
85 time
86 types
87 vision
88 vision of patients
89 visual field
90 visual field position
91 web camera
92 wide visual field
93 schema:name The influence of visual field position induced by a retinal prosthesis simulator on mobility
94 schema:pagination 1765-1770
95 schema:productId N1615c65dfe65400dac8a7711479d56d5
96 N44063b3d571a4b68a1dd2cc19d7b0a09
97 Nd1499dfcbedf4a6f86b2a3bc3f8ebbc6
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116014115
99 https://doi.org/10.1007/s00417-019-04375-2
100 schema:sdDatePublished 2022-09-02T16:05
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Na467edf94ee74ebd9be56142119e8a69
103 schema:url https://doi.org/10.1007/s00417-019-04375-2
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N1615c65dfe65400dac8a7711479d56d5 schema:name doi
108 schema:value 10.1007/s00417-019-04375-2
109 rdf:type schema:PropertyValue
110 N19ce16b559444257b02fdd169ae436dc rdf:first sg:person.0724263351.59
111 rdf:rest N49cdfb7def694dc19e7db19cf662c360
112 N215bc28568004e0581d5bfd16bf2a311 rdf:first sg:person.011273662612.03
113 rdf:rest N19ce16b559444257b02fdd169ae436dc
114 N2ec5d8d3b9f84fcea65b41c88ce79683 schema:issueNumber 8
115 rdf:type schema:PublicationIssue
116 N38d05bb0c3d142d8a3995f00c7a9ae69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Microelectrodes
118 rdf:type schema:DefinedTerm
119 N3d69bf88bb684792869a913462da271c schema:volumeNumber 257
120 rdf:type schema:PublicationVolume
121 N40bcb4a8b2c14463ad90094626e587aa rdf:first sg:person.0753572131.76
122 rdf:rest Ne7e7b47458254094b5495fa7ec4726e9
123 N44063b3d571a4b68a1dd2cc19d7b0a09 schema:name dimensions_id
124 schema:value pub.1116014115
125 rdf:type schema:PropertyValue
126 N49cdfb7def694dc19e7db19cf662c360 rdf:first sg:person.01144774727.15
127 rdf:rest rdf:nil
128 N522ebfaf2dd549d795cf3d6713f92aee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Visual Acuity
130 rdf:type schema:DefinedTerm
131 N5e94b79aef4b46d385a3be77e291e6cf rdf:first sg:person.01172247246.14
132 rdf:rest N215bc28568004e0581d5bfd16bf2a311
133 N74421d0606cb41a299e6b71a42c7b58d rdf:first sg:person.01362747631.20
134 rdf:rest N5e94b79aef4b46d385a3be77e291e6cf
135 N9200fd0dfde6493dbc4b55cb45cb92f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Visual Prosthesis
137 rdf:type schema:DefinedTerm
138 N9978afe2757e47169a120e5ae0f45084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Male
140 rdf:type schema:DefinedTerm
141 N9f631986e607486da887edf80dc2a936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Visual Fields
143 rdf:type schema:DefinedTerm
144 Na39a1b9cadc54598837d63201a653e42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Electric Stimulation
146 rdf:type schema:DefinedTerm
147 Na467edf94ee74ebd9be56142119e8a69 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Na4ee96fddba44cd68172ff664eb0df5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Retina
151 rdf:type schema:DefinedTerm
152 Nc566507d95594bfdb26945cae68065f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Adult
154 rdf:type schema:DefinedTerm
155 Nd1499dfcbedf4a6f86b2a3bc3f8ebbc6 schema:name pubmed_id
156 schema:value 31147839
157 rdf:type schema:PropertyValue
158 Ndf9c9de7fe5c4552bbaed31dd7ef35a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Humans
160 rdf:type schema:DefinedTerm
161 Ne5a57395bf8743cfa6febb5f7ec7b189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Healthy Volunteers
163 rdf:type schema:DefinedTerm
164 Ne7e7b47458254094b5495fa7ec4726e9 rdf:first sg:person.01106506104.42
165 rdf:rest N74421d0606cb41a299e6b71a42c7b58d
166 Nef1b66469f7d45d09f4c77609f44e159 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Retinitis Pigmentosa
168 rdf:type schema:DefinedTerm
169 Nf1933179375144858cc34fea3f01b9e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Female
171 rdf:type schema:DefinedTerm
172 Nf1cad18b3ac54835a180f4b787b31625 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Evoked Potentials, Visual
174 rdf:type schema:DefinedTerm
175 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
176 schema:name Medical and Health Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
179 schema:name Neurosciences
180 rdf:type schema:DefinedTerm
181 sg:grant.5905967 http://pending.schema.org/fundedItem sg:pub.10.1007/s00417-019-04375-2
182 rdf:type schema:MonetaryGrant
183 sg:journal.1358101 schema:issn 0941-2921
184 1435-702X
185 schema:name Graefe's Archive for Clinical and Experimental Ophthalmology
186 schema:publisher Springer Nature
187 rdf:type schema:Periodical
188 sg:person.01106506104.42 schema:affiliation grid-institutes:grid.136593.b
189 schema:familyName Hozumi
190 schema:givenName Kenta
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106506104.42
192 rdf:type schema:Person
193 sg:person.011273662612.03 schema:affiliation grid-institutes:grid.136593.b
194 schema:familyName Morimoto
195 schema:givenName Takeshi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273662612.03
197 rdf:type schema:Person
198 sg:person.01144774727.15 schema:affiliation grid-institutes:grid.136593.b
199 schema:familyName Fujikado
200 schema:givenName Takashi
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144774727.15
202 rdf:type schema:Person
203 sg:person.01172247246.14 schema:affiliation grid-institutes:grid.136593.b
204 schema:familyName Kanda
205 schema:givenName Hiroyuki
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172247246.14
207 rdf:type schema:Person
208 sg:person.01362747631.20 schema:affiliation grid-institutes:grid.136593.b
209 schema:familyName Hirota
210 schema:givenName Masakazu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362747631.20
212 rdf:type schema:Person
213 sg:person.0724263351.59 schema:affiliation grid-institutes:grid.136593.b
214 schema:familyName Nishida
215 schema:givenName Kohji
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724263351.59
217 rdf:type schema:Person
218 sg:person.0753572131.76 schema:affiliation grid-institutes:grid.136593.b
219 schema:familyName Endo
220 schema:givenName Takao
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753572131.76
222 rdf:type schema:Person
223 sg:pub.10.1007/s00221-008-1335-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042793198
224 https://doi.org/10.1007/s00221-008-1335-7
225 rdf:type schema:CreativeWork
226 grid-institutes:grid.136593.b schema:alternateName Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
227 Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
228 schema:name Department of Applied Visual Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
229 Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...